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A B S T R A C T

This paper studies optimal taxation of earnings when the degree of tax progressivity is allowed to vary with
age. The setting is an overlapping-generations model that incorporates irreversible skill investment, flexible
labor supply, ex ante heterogeneity in the disutility of work and the cost of skill acquisition, partially insur-
able wage risk, and a life cycle productivity profile. An analytically tractable version of the model without
intertemporal trade is used to characterize and quantify the salient trade-offs in tax design. The key results
are that progressivity should be U-shaped in age and that the average marginal tax rate should be increasing
and concave in age. These findings are confirmed in a version of the model with borrowing and saving that
we solve numerically.

1. Introduction

A central problem in public finance is to design a tax and transfer
system to pay for public goods and provide insurance to unfortunate
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individuals while minimally distorting labor supply and investments
in physical and human capital. One potentially important tool for
mitigating tax distortions is “tagging”: letting tax rates depend on
observable, immutable, or hard-to-modify personal characteristics.
This idea was proposed first by Akerlof (1978) and has recently
gained new attention in the policy debate (see, for example, Banks
and Diamond, 2010). Age is one such characteristic.

The purpose of this paper is to study optimal labor income tax-
ation in a setting in which the parameters of the tax system are
allowed to vary with age. We do not study fully optimal Mirrleesian
tax system design. Rather, we restrict attention to the parametric
class of income tax and transfer systems given by

T( y) = y − ky1−t , (1)
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where y is gross income and T(y) is taxes net of transfers. The param-
eter t controls the progressivity of the tax system, with t = 0
corresponding to a flat tax rate and t > 0 (t < 0) implying a pro-
gressive (regressive) tax and transfer system. Conditional on t, the
parameter k controls the level of taxation. This class of tax systems
has a long tradition in public finance; see, for example, Jakobs-
son (1976), Kakwani (1977), Musgrave (1959) and, more recently,
Bénabou (2000, 2002) and Heathcote et al. (2017).

The key innovation in the present paper is to let the parameters k
and t in Eq. (1) be conditioned on age, so that both the level and the
progressivity of the tax schedule can be made age-dependent.

In Heathcote et al. (2017), we document that the parametric class
in Eq. (1) provides a remarkably good approximation to the actual
tax and transfer scheme in the US for households aged 25–60. In
particular, Eq. (1) implies that after-tax earnings y − T(y) should
be a log-linear function of pre-tax earnings y. Using data from the
Panel Study of Income Dynamics (PSID), Heathcote et al. (2017)
show that a linear regression of the logarithm of post-government
earnings on the logarithm of pre-government earnings yields a very
good fit, with an R2 of 0.93: when plotting average post-government
against pre-government earnings for each percentile of the sample,
the relationship is virtually log-linear.

In that paper, we did not investigate whether the current
tax/transfer system de facto features elements of age dependence
in progressivity. For example, one may think that certain transfers
(e.g., UI benefits, child benefits) and certain provisions (e.g., mortgage
interest and medical expenditure deductibility) would effectively
induce some age dependence. We have therefore repeated our pre-
vious estimation, allowing the intercept and slope parameters to
both depend on age. Fig. 1 plots the estimated t for each age group
together with the estimated age-invariant tUS = 0.181. We find that
there is no significant age dependence in progressivity embedded in
the current US system.

The aim of this paper is to explore whether there is scope for
improving the current US tax and transfer system by introducing
explicit age dependence. Our environment, which closely follows
Heathcote et al. (2017), is an overlapping-generations model in
which individuals care about consumption, leisure, and a publicly
provided good. Individuals make an irreversible skill investment
when young and make a labor-leisure choice in each period of work-
ing life. People differ ex ante in their learning ability and in their
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Fig. 1. The coefficient t estimated from a regression of log disposable income y − T(y)
on log gross income y, where intercept and slope are both allowed to vary with age.
The straight line is the estimated tUS = 0.181 when age dependence is not allowed
in the regression. See Heathcote et al. (2017) for details on the 2000–2006 PSID data
used in this estimation, and on the construction of y and T(y) at the household level.

willingness to work. Those with higher learning ability invest in
higher skills, and those with a lower utility cost of effort work
more hours. Skills are imperfect substitutes, and the price of skills
is an equilibrium outcome. Deterministic life cycle profiles for labor
productivity and for the disutility of work generate systematic age
variation in average wages, hours, and consumption. During working
life, individuals face idiosyncratic shocks to their productivity that
can only be partially insured privately. The uninsurable (and perma-
nent) component of these wage shocks passes through to consump-
tion, generating a rising age profile for within-cohort consumption
inequality, as in the data.

Tax progressivity compresses ex post dispersion in consump-
tion. Thus, the social insurance embedded in the tax and transfer
system partially offsets inequality in initial conditions and also pro-
vides a substitute for the lack of private insurance against life cycle
shocks. However, tax progressivity discourages labor supply and skill
investment. Because the skill choice is determined by the after-tax
return, the tax system affects the equilibrium skill distribution and,
therefore, pre-tax skill prices.

Most of our analysis focuses on a version of the model in which
there are no markets for intertemporal borrowing and lending. In
this environment, we derive a closed-form solution for an equally-
weighted steady-state social welfare function, which we use to build
intuition about the drivers of optimal age variation in tax progressiv-
ity. Toward the end of the paper, we extend the analysis to allow for
life cycle borrowing and lending. In this case, we must solve for equi-
librium allocations numerically, but the optimal policy turns out to
be quite similar.

A first result is that, for any age profile for t, the optimal age pro-
file for the tax level parameter k (which controls the average level
of taxation) equates average consumption by age. This convenient
separation between the roles of k and t arises because under our
balanced-growth-consistent utility specification, k has no impact on
either skill investment or labor supply.

The shape of the optimal age profile for the tax progressivity
parameter t trades off two key forces.

First, age is informative about the dispersion of productivity. Dis-
persion in productivity is increasing with age because individuals
face permanent idiosyncratic shocks that cumulate over the life
cycle. To the extent that these shocks are privately uninsurable, they
will translate into increasing consumption dispersion with age. The
planner has an incentive to target redistribution where inequality is
concentrated, namely among the old. This uninsurable risk channel is
a force for having progressivity increase with age.

Second, age is informative about average earnings, since wages
net of the disutility of work are increasing during the first decades
of working life. Given a generally progressive tax system, an increas-
ing age-earnings profile will imply increasing marginal tax rates. In
order to smooth marginal tax rates over the life cycle, the planner
has an incentive to have progressivity decline with age. This force for
declining progressivity is amplified by the result that average tax
rates optimally rise with age (via a declining profile for k) in order to
smooth average consumption over the life cycle. Having progressiv-
ity decline with age allows the planner to smooth marginal tax rates
even as average tax rates rise. We call this mechanism the life cycle
channel.

Our quantitative analysis, with the model calibrated to the US
economy, implies that, on their own, life cycle accumulation of unin-
surable risk and life cycle variation in productivity each call for
significant variation in tax progressivity over the life cycle. When
both factors are combined, the two effects roughly offset, implying
an optimal profile for progressivity t that is U-shaped in age.

Because skill investment is irreversible, a tax reform induces a
transition. In the economy without borrowing and lending we are
able to compute the full transitional dynamics for the Ramsey plan-
ner who can vary tax parameters freely by both time and age. Here,
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the planner has an incentive to set a high value for progressivity
for existing cohorts who have already made their skill investment
decisions, while keeping progressivity low for new skill-investment-
elastic generations. Throughout the transition, the average level of
progressivity changes, but each cohort is nevertheless subject to a
U-shaped age profile of progressivity over the life cycle.

In this benchmark economy without intertemporal trade, part of
the gains from age-dependent taxation accrue because the planner
lets the average tax rate increase with age in order to redistribute
from the (more productive) old to the (less productive) young. If
households could smooth consumption independently via borrow-
ing and lending, this rationale for an age-varying tax system would
presumably be weakened. How would this change the optimal age
profile for progressivity?

To answer this question, we extend our model to allow house-
holds to trade a bond in zero net supply. We then solve numerically
for allocations and for the optimal age-dependent tax system under
various borrowing limits. Our simulations confirm the intuition that,
with very loose liquidity constraints, the life cycle channel vanishes.
However, when we calibrate the value for the borrowing limit based
on data from the Survey of Consumer Finances, the optimal age pro-
file for t is quite close to the one for the baseline economy without
intertemporal trade. The welfare gains of moving from the current
age-invariant tax system to the optimal age-varying one are now
around 1.8% of lifetime consumption.

Finally, we note that this U shape in the age profile for optimal
progressivity becomes flatter in two empirically relevant cases. First,
when the labor supply elasticity rises with age as workers approach
retirement (in the spirit of Ndiaye, 2017). Second, when part of the
hump-shaped age profile for household consumption in the data is
explained by changing demographics. In this case, a portion of con-
sumption variation by age is efficient, weakening the motive for
redistribution across age groups.

1.1. Related literature

We are not the first to study motives for age dependence in the
optimal design of tax schedules. Several antecedents of ours follow
the Ramsey tradition. Erosa and Gervais (2002) analyze optimal tax-
ation in a life cycle economy without any sources of within-cohort
heterogeneity (i.e., all inequality is between age groups). They focus
on models in which the age dependence in average tax rates is driven
by the fact that the Frisch elasticity of labor supply varies over the
life cycle. This channel depends on preference specifications. In our
baseline model, we have abstracted from this channel by choosing
a specification in which the Frisch elasticity is constant, but in an
extension we allow the Frisch to vary with age. Conesa et al. (2009)
study optimal taxation within a Gouveia–Strauss class of non-linear
tax functions. While more flexible than ours, this class of functions
is less analytically tractable. They do not explicitly model age depen-
dence, but they point out that a positive tax on capital income can
stand in for age-dependent taxes because the age profile of wealth is
correlated with that of productivity. Karabarbounis (2016) explores
optimal age-varying taxation numerically using the same functional
form for the net tax and transfer system as we do. However, he
restricts attention to optimal age variation in the k parameter —
which controls the level of taxes — while assuming an age-invariant
value for the progressivity parameter t. We find additional welfare
gains from allowing both parameters to depend on age.

A more recent literature studies the role of age variation in the
Mirrleesian optimal taxation framework. Three papers are especially
related to our work. The first is by Weinzierl (2011), who focuses
on the rising age profile of wages, and on how these profiles differ
across skill groups. His key finding, namely that optimal average and
marginal tax rates are both rising with age, is qualitatively similar to

ours when the only operational channel is the life cycle one. The sec-
ond related paper is Farhi and Werning (2013), who analyze taxation
in a dynamic life cycle economy. They focus on the role of persistent
productivity shocks. In their numerical example, the fully optimal
history-dependent tax schedule displays the same qualitative fea-
tures as our model when our risk channel is the only one operative:
average wedges increase with age, average labor earnings are falling
with age, and average consumption is constant. These findings are
mirrored in the work of Golosov et al. (2016), who focus on the addi-
tional effect of skewness of wage shocks. Ndiaye (2017) extends Farhi
and Werning to allow for a discrete retirement choice, which reduces
optimal marginal tax rates around the age of retirement when labor
supply is relatively elastic.

More recently, the Mirrleesian strand of the optimal tax literature
has begun incorporating endogenous human capital accumulation
into the optimal design problem.1 Most closely related to ours are
the papers by Best and Kleven (2013) and Stantcheva (2017). Best
and Kleven (2013) extend the canonical Mirrleesian framework to
incorporate endogenous on-the-job learning in a simple two-period
model where working more hours increases productivity throughout
one’s career. This mechanism makes the labor supply elasticity lower
for the young (whose return to work also accrues in the future) and
offers an argument for decreasing marginal taxes with age. In our
paper, we abstract from learning by working and highlight the role
of skill acquisition before entry in the labor market.

Stantcheva (2017) studies optimal Mirrleesian taxation over the
life cycle in a model in which individuals can endogenously accu-
mulate human capital by spending on education. Her model and
analysis differs from ours in several respects. First, she studies the
role of human capital in increasing or reducing wage risk, while risk
is independent of skill in our model. Second, she shows that to imple-
ment the constrained efficient allocation one needs policy tools that
directly target the skill investment margin, such as education subsi-
dies or income-contingent loans, while we focus exclusively on the
design of the tax/transfer system.

Interestingly, recent contributions in this literature have demon-
strated that indexing tax rates by age can capture most of the
potential welfare gains from fully optimal, history-dependent poli-
cies (e.g., Farhi and Werning, 2013; Golosov et al., 2016; Stantcheva,
2017; Weinzierl, 2011).

With respect to this existing set of results, our contribution is
threefold. First, we offer a closed-form expression for social welfare
as a function of the vector {ta} and the structural parameters of the
model describing preferences, technology, ex ante heterogeneity,
and ex post uncertainty. Each term in our welfare expression has an
economic interpretation and embodies one of the channels shaping
the optimal progressivity trade-off discussed above. Second, we find
that the life cycle channel is quantitatively most important in the
first half of the working life, when average wages are rising fast,
while the uninsurable risk matters more later in life as permanent
shocks cumulate. This distinction explains our novel result that
optimal progressivity is U-shaped in age. Third, we identify a new
motive for age variation in taxation that hinges on the presence of
endogenous and irreversible skill investment and that operates only
during the transition.

The paper proceeds as follows. Sections 2 and 3 lay out the eco-
nomic environment and solve for the competitive equilibrium given
a tax policy. Section 4 discusses the social welfare function and
Section 5 derives analytical properties of optimal taxes in steady
state and during the transition. Section 6 studies the quantitative
implications of allowing for age variation in taxes and calculates
the welfare gain of introducing such fiscal tools. Section 7 develops

1 See, for example, Kapička (2015) and Findeisen and Sachs (2016).
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the extension of the model with intertemporal trade. Section 8
concludes.

2. Economic environment

Demographics: The model has a standard overlapping-
generations structure. Agents enter the economy at age a = 0 and
live for A periods. The total population is of mass one, and thus each
age group is of mass 1/A. There are no intergenerational links. We
index agents by i ∈ [0, 1]. To simplify notation, we will abstract from
time subscripts until we explore the transition from one tax system
to another in Section 5.2.

Life cycle: Upon birth, individuals have a chance to invest in skills
si. Once the individual has chosen si, he or she enters the labor mar-
ket. The individual provides hi ≥ 0 hours of labor supply, consumes a
private good ci, and enjoys a publicly provided good G.2 Each period
he or she faces stochastic fluctuations in labor productivity zi.

Preferences: Expected lifetime utility over private consumption,
hours worked, publicly provided goods, and skill investment effort
for individual i is given by

Ui = −vi(si) + E0

(
1 − b

1 − bA

) A−1∑
a=0

baui(cia, hia, G), (2)

where b ≤ 1 is the discount factor, common to all individuals, and the
expectation is taken over future idiosyncratic productivity shocks,
whose process is described below. The disutility of the initial skill
investment si ≥ 0 takes the form

vi(si) =
(ji)

−1/x

1 + 1/x
(si)

1+1/x, (3)

where the parameter x ≥ 0 controls the elasticity of skill invest-
ment with respect to the marginal return to skill, and j i ≥ 0 is
an individual-specific parameter that determines the utility cost of
acquiring skills. The larger is j i, the smaller is the cost, so one can
think of j i as indexing innate learning ability. We assume that j i ∼
exp(g), an exponential distribution with parameter g. As we demon-
strate below, exponentially distributed ability yields Pareto right
tails in the equilibrium wage and earnings distributions. Skill invest-
ment decisions are irreversible, and thus skills are fixed through the
life cycle.3

The period utility function ui is

ui (cia, hia, G) = log cia − exp [(1 + s) (v̄a + vi)]
1 + s

(hia)
1+s + w log G,

(4)

where exp [(1 + s) (vi + v̄a)] scales the disutility of work effort. The
profile

{
v̄a
}A−1

a=0 captures the common and deterministic evolution in
the disutility of work as individuals age. The parameter vi is a fixed
individual effect that is normally distributed: vi ∼ N

(
vv
2 , vv

)
, where

vv denotes the cross-sectional variance. We assume that j i and vi
are uncorrelated. The parameter s > 0 determines aversion to

2 G has two possible interpretations. The first is that it is a pure public good, such
as national defense or the judicial system. The second is that it is an excludable good
produced by the government, such as public education, that is distributed uniformly
across households.

3 The baseline model in Heathcote et al. (2017) assumes reversible skill invest-
ment. Given reversible investment, the skill investment decision is essentially static,
whereas in the present model it will be a dynamic decision.

hours fluctuations. Finally, w ≥ 0 measures the taste for the publicly
provided good G relative to private consumption.

Technology: Output Y is a constant elasticity of substitution
aggregate of effective hours supplied by the continuum of skill types
s ∈ [0, ∞),

Y =

(∫ ∞

0

[
N̄(s) • m (s)

] h−1
h ds

) h
h−1

, (5)

where h > 1 is the elasticity of substitution across skill types, N̄(s)
denotes average effective hours worked by individuals of skill type
s, and m(s) is the density of individuals with skill type s. Note that
all skill levels enter symmetrically in the production technology, and
thus any equilibrium differences in skill prices will reflect relative
scarcity.

Labor productivity and earnings: Log individual labor efficiency
zia is the sum of three orthogonal components, xa, aia, and eia,

zia = xa + aia + eia. (6)

The first component xa captures the deterministic age profile
of labor productivity, common for all individuals. The second com-
ponent aia captures idiosyncratic shocks that cannot be insured
privately, and follows the unit root process aia = ai,a−1 + yia,
with i.i.d. innovation yia ∼ N

(− vy
2 , vy

)
and initial value ai0 = 0.

The third component eia captures idiosyncratic shocks that can be
insured privately. The only property of the time series process for
eia that will matter for our welfare expressions and optimal taxa-
tion results is the age profile for the cross-sectional variance, ve,a.
For expositional simplicity we will therefore assume, without loss of
generality, that shocks to e are drawn independently over time from
a Normal distribution, eia ∼ N (−ve,a/2, ve,a), where ve,a captures the
variance at age a.

A standard law of large numbers ensures that none of the
individual-level shocks induce any aggregate uncertainty in the
economy.

Individual earnings yia are the product of four components:

yia = p(si)︸︷︷︸
skill price

× exp(xa)︸ ︷︷ ︸
age-productivity profile

× exp(aia + eia)︸ ︷︷ ︸
labor market shocks

× hia︸︷︷︸
hours

. (7)

The first component p(si) is the equilibrium price for the type
of labor supplied by an individual with skills si; the second com-
ponent is the life cycle profile of average labor efficiency; the third
component is individual stochastic labor efficiency; and the fourth
component is the number of hours worked by the individual. Thus,
individual earnings are determined by (i) skill investments made
before labor market entry, in turn reflecting innate learning abil-
ity j i; (ii) productivity that grows exogenously with experience;
(iii) fortune in labor market outcomes determined by the realiza-
tion of idiosyncratic efficiency shocks; and (iv) work effort, reflecting,
in part, innate and age-varying taste for leisure, defined by vi and
v̄a. Taxation affects the equilibrium pre-tax earnings distribution
by changing skill investment choices, and thus skill prices, and by
changing labor supply decisions.

Financial assets: We adopt a simplified version of the partial-
insurance structure developed in Heathcote et al. (2014). There is a
full set of state-contingent claims for each realization of the e shock,
implying that variation in e is fully insurable. These claims are traded
within the period. Let Bia (E) and Qa (E) denote the quantity and the
price, respectively, of insurance claims purchased that pay one unit
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of consumption if and only if e ∈ E ⊆ R.4 In Section 7 we introduce
borrowing and lending, solve for the equilibrium numerically, and
explore how this alternative market structure changes optimal tax
policy.5

Labor and goods markets: The final consumption good and all
types of labor services are traded in competitive markets. The final
good is the numéraire of the economy.

Government: The government runs a tax and transfer scheme
and provides each household with an amount of goods or services
equal to G . This public good can only be provided by the gov-
ernment, which transforms final goods into G one for one. Let g
denote government expenditures as a fraction of aggregate output
(i.e., G = gY).

Let Ta(y) be the net tax owed at income level y by age group a. We
study optimal policies within the class of tax and transfer schemes
defined by the function

Ta( y) = y − kay1−ta , (8)

where the parameters ta and ka are specific to age group a. The spec-
ification of Eq. (8) with age-invariant parameters has a long tradition
in public finance dating back to Feldstein (1969). Recently, Bénabou
(2000, 2002) and Heathcote et al. (2014, 2017) demonstrated its
tractability in the context of equilibrium macroeconomic models.
Heathcote and Tsujiyama (2016) have shown that in a static environ-
ment, this functional form can closely approximate the fully optimal
Mirrleesian policy.

The parameter ta determines the degree of progressivity of the
tax system and is the key object of interest in our analysis. There
are two ways to see why ta is a natural index of progressivity. First,
Eq. (8) implies the following mapping between individual disposable
(post-government) earnings ỹ and pre-government earnings y:

ỹ = kay1−ta . (9)

Thus, (1 − ta) measures the elasticity of disposable to pre-tax
income. Second, a tax scheme is commonly labeled progressive
(regressive) if the ratio of marginal to average tax rates is larger
(smaller) than one for every level of income y. Within our class, we
have

1 − T ′
a( y)

1 − Ta( y)/y
= 1 − ta. (10)

When ta > 0, marginal rates always exceed average rates, and
the tax system is therefore progressive. Conversely, when ta < 0, the
tax system is regressive. The case ta = 0 implies that marginal and
average tax rates are equal: the system is a flat tax with rate 1 − ka.

Given ta, the second parameter, ka, shifts the tax function and
determines the average level of taxation in the economy. At the
break-even income level y0

a = (ka)
1
ta > 0, the average tax rate

is zero and the marginal tax rate is ta. If the system is progressive

4 An alternative way to decentralize insurance with respect to e is to assume that
individuals belong to large families and that shocks to a are common across members
of a given family, while shocks to e are purely idiosyncratic and thus can be pooled
within the family.

5 In Heathcote et al. (2014), we allowed agents to trade a single non-contingent
bond and showed that there is an equilibrium in which this bond is not traded, given
that idiosyncratic wage shocks follow a unit root process. This result does not gen-
eralize to the present model because age variation in efficiency and disutility (xa , v̄a)
and in the tax parameters ta and ka introduces motives for intertemporal borrowing
and lending.

(regressive), then at every income level below (above) y0
a , the aver-

age tax rate is negative and households obtain a net transfer from
the government. Thus, this function is best seen as a tax and transfer
schedule, a property that has implications for the empirical measure-
ment of ta. The income-weighted average marginal tax rate (MTR) at
age a given this tax and transfer schedule is

MTRa = 1 − ka(1 − ta)
∫

(yia)
1−ta di∫

yiadi
. (11)

The government must run a balanced budget, so the government
budget constraint is

g
A−1∑
a=0

∫
yiadi =

A−1∑
a=0

∫ [
yia − ka(yia)

1−ta
]

di. (12)

The government chooses g and the sequences
{
ta,ka

}A−1
a=0, with

one instrument being determined residually by Eq. (12). Since the
budget constraint holds at the aggregate level (not at the level of
each age group), the government can redistribute both within and
between age groups.

The aggregate resource constraint for the economy (recall popu-
lation has measure 1 so aggregates equal averages) is

Y = G +
1
A

A−1∑
a=0

∫ 1

0
cia di. (13)

2.1. Individual problem

At age a = 0, the individual chooses a skill level, given her
idiosyncratic draw (j i,vi). Combining Eqs. (2) and (3), the first-order
necessary and sufficient condition for the skill choice is

∂vi (si)

∂si
=
(

si

ji

) 1
x

=
(

1 − b

1 − bA

)
E0

A−1∑
a=0

ba ∂ui (cia, hia, G)

∂si
. (14)

Thus, the marginal disutility of skill investment for an individual
with learning ability j i must equal the discounted present value of
the corresponding expected benefits in the form of higher lifetime
wages. Recall that initial skill investments are irreversible, and thus
older agents cannot supplement or unwind past skill investments.

At the beginning of every period of working life a, the innova-
tion yia to the random walk shock aia is realized. Then, the insurance
markets against the eia shocks open and the individual buys insur-
ance claims Bia( • ). Finally, eia is realized, insurance claims pay out,
and the individual chooses hours hia, receives wage payments, and
chooses consumption expenditures cia. Thus, the individual budget
constraint in the middle of the period, when the insurance purchases
are made, is∫

E
Qa(e)Bia (e) de = 0, (15)

and the budget constraint at the end of the period, after the realiza-
tion of eia, is

cia = ka[p(si) exp (xa + aia + eia) hia]1−ta + Bia(eia). (16)

Given an initial skill choice si, the problem for an agent is to
choose insurance purchases, consumption, and hours worked in
order to maximize lifetime utility (2) subject to sequences of bud-
get constraints (15)–(16), taking as given the process for efficiency
units described in Eq. (6). In addition, agents face non-negativity
constraints on consumption and hours worked.
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3. Equilibrium

We now adopt a recursive formulation to define a stationary competitive equilibrium for our economy. The state vector for the skill
accumulation decision at age a = 0 is just the pair of fixed individual effects (j,v). At subsequent ages, the state vector for the beginning-
of-the-period decision when insurance claims are purchased is (v, s, a,a). The individual state vector for the end-of-period consumption and
labor supply decisions is (v, s, a,a, e).6 Note that age is a state variable for two reasons: (i) labor productivity and the disutility of work vary
with age, and (ii) the parameters of the tax system potentially vary with age. What makes the model tractable, in spite of all the heterogeneity
and risk it features, is that all the individual states are exogenous.

We now define a stationary recursive competitive equilibrium for our economy. Stationarity requires that equilibrium skill prices are
constant over time, which in turn requires an invariant skill distribution m(s). A stationary skill distribution is consistent with a time-invariant
tax schedule, which is the focus of our steady-state welfare analysis. However, when we later consider optimal once-and-for-all tax reforms
and incorporate the transition from the current tax system, the economy-wide skill distribution will vary deterministically over time. In that
case, an additional assumption is required to preserve tractability. We turn to the transition case in Section 5.2.

Given a tax/transfer system
({ta} ,

{
ka
})

, a stationary recursive competitive equilibrium for our economy is a public good provision level g,
asset prices Qa( • ), skill prices p(s), decision rules s (j,v), c (v, s, a,a, e), h (v, s, a,a, e), and B ( • ; v, s, a,a), effective hours by skill N̄(s), and a skill
density m(s) such that

1. Households solve the problem described in Section 2.1, and s (j,v), c (v, s, a,a, e), h (v, s, a,a, e), and B ( • ; v, s, a,a) are the associated
decision rules.

2. Labor markets for each skill type clear and p(s) is the value of the marginal product from an additional unit of effective hours of skill
type s:

p(s) =
(

Y

N̄(s) • m(s)

) 1
h

.

3. The skill density m(s) is consistent with individual decisions.
4. Insurance markets clear, and the prices Qa( • ) are equal to the probabilities that the realization for e is in the corresponding set.
5. The government budget is balanced: g satisfies Eq. (12).

By Walras’ law, the goods market clears and Eq. (13) holds.
Propositions 1 and 2 describe the equilibrium allocations and skill prices in closed form. The benefits from analytical tractability will be

evident in Propositions 3 and 4, where we derive a set of results for optimal taxation based on a closed-form expression for social welfare.

Proposition 1 (hours and consumption). The equilibrium allocations of hours worked and consumption are given by

log h (v, a, e) =
log(1 − ta)

1 + s
− v̄a − v +

(
1 − ta

s + ta

)
e − 1

s + ta
Ca, (17)

log c (v, s, a,a)= logka + (1−ta)

[
log p(s)+xa + a +

log(1 − ta)
1 + s

− (v̄a+ v)
]

+ Ca (18)

where the age-specific constant Ca is given by Ca = (ve,a/2) • (1 − ta) (1 − 2ta − sta) /(s + ta).

With logarithmic utility and zero individual wealth, the income and substitution effects on labor supply from differences in skill levels s,
experience xa, and uninsurable shocks a exactly offset, and hours worked are therefore independent of (s, xa,a) and of ka (the level of taxation)
and depend on age only through the age-dependent progressivity rate ta and the constant Ca. The hours allocation is composed of four terms.
The first term captures the effect of taxes on labor supply in the absence of within-age heterogeneity. This can be interpreted as the hours of
a “representative agent” of age a. This term depends on age through progressivity and disutility of work, and is decreasing in both arguments.
The second captures the fact that a higher disutility of work leads an agent to choose lower hours. The third term captures the response of
hours worked to an insurable shock e. Note that it has no income effect precisely because it is insurable. The response here is proportional to
the tax-modified Frisch elasticity (1 − ta)/(s + ta). This elasticity collapses to the standard Frisch elasticity 1/s when ta = 0. Note that
a progressive system (ta > 0) dampens the response of hours to insurable shocks. The fourth term captures the welfare-improving effect of
insurable wage variation. As illustrated by Heathcote et al. (2008), greater dispersion of insurable shocks allows agents to work more when
they are more productive and take more leisure when they are less productive, thereby raising average productivity, average leisure, and
welfare. Progressivity weakens this effect because it reduces the covariance between hours and wages.

Consumption is increasing in the skill price p(s), in the predictable component of labor efficiency xa, and in the uninsurable stochastic
component of wages a. Since hours worked are decreasing in the disutility of work (v̄a + v), so are earnings and consumption. The redis-
tributive role of progressive taxation is evident from the fact that a larger ta shrinks the pass-through to consumption from heterogeneity in
initial conditions s and v and from realizations of uninsurable shocks a and efficiency units xa. A lower level of taxation (higher ka) increases
consumption. Insurable variation in productivity has a positive level effect on average consumption in addition to average leisure. Again,

6 Since equilibrium insurance payouts B(e; v, s, a,a) are a known function of all the other individual states, in what follows we omit them from the state vector.
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higher progressivity weakens this effect. Because of the assumed separability between consumption and leisure in preferences, consumption
is independent of the insurable shock e.

Proposition 2 (skill price and skill choice). In a stationary recursive equilibrium, skill prices are given by

log p(s) = p0 (t̄) + p1 (t̄) • s, (19)

where t̄ is discounted average progressivity, t̄ =
(

1−b

1−bA

)∑A−1
a=0 b

ata, and p0 and p1 are given by

p1 (t̄) =
(
g

h

) 1
1+x

(1 − t̄)
− x

1+x (20)

p0(t̄) =
1

h − 1

{
1

1 + x

[
x log

(
1 − t̄

h

)
− log (g)

]
+ log

(
h

h − 1

)}
. (21)

The skill investment allocation is given by

s(j) = [(1 − t̄)p1 (t̄)]x •j =
[
g

h
(1 − t̄)

] x
1+x

•j, (22)

and the equilibrium skill density m(s) is exponential with parameter g
1

1+x [h/ (1 − t̄)]
x

1+x .

Note, first, that the log of the equilibrium skill price takes a “Mincerian” form in the sense that it is an affine function of s. The constant p0(t̄)
is the base log price of the lowest skill level (s = 0), and p1(t̄) is the pre-tax marginal return to skill.

Eq. (20) indicates that higher average progressivity increases the equilibrium pre-tax marginal return p1(t̄). The reason is that increasing
progressivity compresses the skill distribution toward zero, and as high skill types become more scarce, imperfect substitutability in production
drives up the pre-tax return to skill. Thus, our model features a “Stiglitz effect” (Stiglitz, 1985). The larger is x, the more sensitive is skill
investment to a given increase in t̄, and thus the larger is the increase in the pre-tax skill premium.

Note that the only aspect of the policy sequence ({ta} ,
{
ka
}
) that matters for the skill investment decision and the skill price function is

discounted average progressivity, t̄. Moreover, skill investment is also independent of initial heterogeneity vv, of the age profiles ({xa} ,
{
v̄a
}
),

and of risk (vy,
{
ve,a

}
). The logic is that, with log utility, the welfare gain from additional skill investment is proportional to the log change in

earnings such investment would induce, and this log change is independent of all idiosyncratic states.

Corollary 2.1 (distribution of skill prices). In a stationary equilibrium, the distribution of log skill premia p1(t̄) • s(j) is exponential with parameter
h. Thus, the cross-sectional variance of log skill prices is

var (log p(s)) =
1
h2

.

The distribution of skill prices p(s) in levels is Pareto with scale (lower bound) parameter exp(p0(t̄)) and Pareto parameter h.

Log skill premia are exponentially distributed because the log skill price is affine in skill s (Eq. (19)) and skills retain the exponential shape of
the distribution of learning ability j (Eq. (22)). It is interesting that inequality in skill prices is independent of the policy sequence ({ta} ,

{
ka
}
).

The reason is that progressivity sets in motion two offsetting forces. On the one hand, as discussed earlier, higher progressivity increases the
equilibrium skill premium p1 (t̄), which tends to raise inequality in skill prices (the Stiglitz effect). On the other hand, higher progressivity
compresses the distribution of skill quantities. These two forces exactly cancel out under our specification of preferences and technology.

Since the exponent of an exponentially distributed random variable is Pareto, the distribution of skill prices in levels is Pareto with param-
eter h. More complementarity (lower h) across skills in production stretches further the tail of the wage distribution as the most skilled, and
scarcest workers, command a higher premium. The other stochastic components of wages (and hours worked) are lognormal, and thus the
equilibrium distributions of wages, earnings, and consumption are Pareto-lognormal. In particular, because the Pareto component dominates
at the top, it has a Pareto right tail, a robust feature of their empirical counterparts (see, e.g., Atkinson et al., 2011).

We now describe how taxation affects aggregate quantities in our model.

Corollary 2.2 (aggregate quantities). Average hours worked, average effective hours and average output are given by H ({ta}) = 1
A

∑A−1
a=0 H (a, ta),

N̄ ({ta}) = 1
A

∑A−1
a=0 N (a, ta), and Y ({ta}) = 1

A

∑A−1
a=0 Y (a, ta), where

H (a, ta) =E [h (v, a, e)]

=(1 − ta)
1

1+s • exp (−v̄a) • exp

[
(1 − ta) (2ta + s (1 + ta))

(s + ta)
2

ve,a

2

]
. (23)
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N (a, ta) =E [exp(xa + a + e)h (v, a, e)]

=(1 − ta)
1

1+s • exp

[
xa − v̄a +

(
1 − ta

(s + ta)
2 (s +2ta + sta)

)
ve,a

2

]
. (24)

Y (a, ta) = E [p(s)] • N (a, ta) , (25)

with E [p(s)] = exp (p0 (t̄)) •h/ (h − 1).

4. Social welfare function

The baseline utilitarian social welfare function we use to evaluate alternative policies puts equal weight on all agents within a cohort. In our
context, where agents have different disutilities of work effort, we define equal weights to mean that the planner cares equally about the utility
from consumption of all agents. Thus, the contribution to social welfare from any given cohort is the within-cohort average value of remaining
expected lifetime utility, where Eq. (2) defines individual expected lifetime utility at age zero. The overlapping-generations structure of the
model also requires us to take a stand on how the government weights cohorts that enter the economy at different dates. We assume that the
planner discounts lifetime utility of future generations at the same rate b as individuals discount utility over the life cycle.

We start by focusing on optimal steady-state policy, defined as the optimal time-invariant policy
({

ta,ka
}A−1

a=0 , G
)

that maximizes welfare
in the associated steady state. In a steady state, expected lifetime utility is identical for each cohort. Moreover, given the assumption that the
planner discounts across generations at rate b, average social welfare W ss

({
ta,ka

}
, g
)

is simply equal to average utility in a cross-section:

Wss ({ta,ka
}

, G
)

=
1
A

A−1∑
a=0

E [u (c (v, s, a,a) , h (v, a, e) , G)] − E [v (s(j), j)] , (26)

where the first expectation is taken with respect to the equilibrium cross-sectional distribution of (v, s,a, e) conditional on a, and the second
expectation is with respect to the cross-sectional distribution of (s, j). The “Ramsey problem” of the government is to choose

({
ta,ka

}A−1
a=0 , G

)
in order to maximize Eq. (26) subject to the government budget constraint (12), where lifetime utilities are given by Eq. (2), equilibrium
allocations are given by Eqs. (17) and (18), and equilibrium skill prices are given by Eq. (19).

In Section 5.2 we will consider time-varying policies that maximize welfare incorporating transition from the current tax system. In partic-
ular, we will assume an unanticipated policy change at date t = 0 from a pre-existing age- and time-invariant policy to a new policy regime
in which the new policy parameters can vary freely by both age and time. The irreversibility of the existing stock of skills induces transitional
dynamics toward the new steady state.

There are two special cases in which policies that maximize steady-state welfare are identical — in welfare terms — to those that maximize
welfare incorporating transition. The first is the case in which b → 1. In this case, there is a transition to the new steady state, but because the
planner is perfectly patient, existing cohorts receive zero weight in social welfare relative to the planner’s concern for future cohorts. Thus, the
planner effectively seeks to maximize steady-state welfare.7 In particular, note that when b = 1, social welfare is simply expected lifetime
utility for a cohort entering in the new steady state, Uss. Then note that in the expression for lifetime utility (Eq. (2)), the weight 1−b

1−bA b
a → 1

A
as b → 1.

The second special case in which incorporating transition makes no difference is the case in which skills are perfect substitutes (h → ∞) so
that there is no skill investment in equilibrium. In this case, transition in response to a change in the tax system is instantaneous, and social
welfare incorporating transition is therefore equal to average period utility in the cross-section — that is, equal to steady-state welfare.8

5. Optimal age-dependent taxes: characterization

For ease of exposition, it is convenient to begin by abstracting from transitional dynamics and to consider optimal policy design in steady
state with b = 1. This approach also has the advantage that we can derive a number of analytical results for optimal taxation. Recall that
given b = 1, transition is irrelevant for welfare, so the policy that is optimal in steady state can also be interpreted as a policy that maximizes
welfare incorporating transition.

5.1. Steady-state welfare

We start by characterizing the optimal choices of g and
{
ka
}

for any given sequence of age-dependent progressivity {ta}.

Proposition 3 (optimal g and
{
ka
}
). For any given sequence {ta}: (i) The optimal share of government expenditure in output g∗ is given by

g∗ =
w

1 + w
.

7 Note that we are assuming that under the optimal policy the economy does converge to a steady state.
8 An additional way to achieve an instantaneous transition to the new steady state is to assume that skill investment is fully reversible at any age. In our view, irreversible skill

investment is the more realistic case.
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(ii) The optimal sequence
{
k∗

a
}

equalizes average consumption across age groups.

Part (i) re-establishes a result in Heathcote et al. (2017) in our more general environment with an age-dependent tax system. The optimal
fraction of output devoted to public goods is independent of how much inequality there is in the economy and independent of the progressivity
of the tax system. It depends only on households’ relative taste for the public good w. Since neither g nor ka appear in the equilibrium allocations
for hours worked or skill investment, changing g will not affect aggregate income or its distribution across households. As a consequence,
the government’s only concern in choosing g is to optimally divide output between private and public consumption, exactly as in a version
of our economy without any heterogeneity (i.e., the “representative agent economy” in Heathcote et al., 2017). In particular, the planner
chooses public spending so as to equate the marginal rate of substitution between private and public consumption to the marginal rate of
transformation between the two goods, the so-called Samuelson condition.9

The result in part (ii) states that the planner modulates the level of taxation for each age group
{
ka
}

in order to equate the marginal utility
of average consumption across age groups. Due to the separability in preferences between consumption and leisure, this implies that average
consumption is equated across age groups. Thus, through the choice for the sequence

{
ka
}
, the government can effectively replicate the role of

life cycle borrowing and saving, absent in the model by assumption, in smoothing predictable life cycle income variation.
One can substitute the optimal decisions for g∗ and

{
k∗

a
}

along with the closed-form expressions described above for equilibrium allocations
into the expression for steady-state welfare, Wss (Eq. (26)). One can then express welfare analytically as a function of model parameters and
of the vector of age-dependent progressivity {ta} as follows:

W ss({ta}) = − 1
A

A−1∑
a=0

1 − ta

1 + s︸ ︷︷ ︸
Disutility of labor

(27)

+ (1 + w) log

{
A−1∑
a=0

(1 − ta)
1

1+s • exp

[
xa − v̄a +

(
ta
(
1 + ŝa

)
ŝ2

a
+

1
ŝa

)
ve,a

2

]}
︸ ︷︷ ︸

Effective hours worked N̄a

+ (1 + w)
1

(1 + x)(h − 1)

[
x log (1 − t̄) + log

(
1

ghx

(
h

h − 1

)h(1+x)
)]

︸ ︷︷ ︸
Productivity from skill investment: log(average skill price)=log(E[p(s)])

− x

1 + x

1 − t̄

h︸ ︷︷ ︸
Avg. education cost

+
1
A

A−1∑
a=0

[
log

(
1 −

(
1 − ta

h

))
+
(

1 − ta

h

)]
︸ ︷︷ ︸

Consumption dispersion across skills

− 1
A

A−1∑
a=0

1
2
(1 − ta)

2 (vv + avy

)
︸ ︷︷ ︸

Cons. dispersion due to uninsurable risk and preference heterogeneity

.

Each term in this welfare expression can be given an intuitive economic interpretation (described in the bracket below each term), along the
lines of the analysis contained in Heathcote et al. (2017). The following proposition establishes some properties of W ss ({ta}) and of optimal
age-dependent progressivity.

Proposition 4 (optimal age-dependent progressivity). The steady-state social welfare function W ss ({ta}) is differentiable and globally concave
in ta as long as s is sufficiently large (a sufficient condition is s ≥ 2). Moreover:

(i) The necessary and sufficient first-order condition ∂W ss ({ta}) /∂ta = 0 implicitly determining the optimal t∗
a can be stated analytically as

0 =
1

h − 1 + t∗
a

− 1
h

+ (1 − t∗
a)
(
vv + avy

)
+

1
1 + s

+ (28)

−
[(

1 + w

h − 1

)
1

1 − t̄(
{
t∗

a
}
)

− 1
h

]
x

1 + x

−
(

1 + w

1 + s

)[
1

1 − t∗
a

+
(

s + 1
s + t∗

a

)3

t∗
ave,a

]
N (a, t∗

a)

N̄
({
t∗

a
}) ,

(ii) The optimal sequence
{
t∗

a
}

is age-invariant if the following three conditions simultaneously hold: (1) uninsurable risk does not change over
the life cycle (vy = 0), (2) insurable risk does not change over the life cycle (ve,a is constant), and (3) the age profile for efficiency net of work
disutility

{
xa − v̄a

}
is constant.

(iii) Relative to the parameterization described in (ii), introducing permanent uninsurable risk (vy > 0) translates into an optimal profile
{
t∗

a
}

that is increasing in age.

9 See, for example, Kaplow (2004), for an extended discussion of the Samuelson rule for optimal public good provision and its optimal financing.
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(iv) Relative to the parameterization described in (ii), if the variance of insurable risk increases with age (ve,a+1 > ve,a) and t∗
a > 0 at some age

a, then t∗
a+1 < t∗

a.
(v) Relative to the parameterization described in (ii), introducing age variation in efficiency net of disutility

{
xa − v̄a

}
translates into an optimal

profile
{
t∗

a
}

that is the mirror image of the profile for
{
xa − v̄a

}
.

The Appendix contains a formal proof of this proposition. In what follows, we offer some intuition for results (ii)–(v).

(ii) In this special case, the first-order condition simplifies to an expression where age a does not appear, hence t∗
a is constant.10 To simplify

the exposition, consider the case h → ∞ and ve,a = 0 for which case the first-order condition simplifies to

0 = (1 − t∗) vv +
1

1 + s
−
(

1 + w

1 + s

)
1

1 − t∗ .

where t∗ is the optimal age-invariant t. It is immediate that t∗ is increasing in preference heterogeneity vv and is decreasing in the
taste for the public good w. Note that when vv = 0, t∗ = −w. As we show in Heathcote et al. (2017), in this representative-agent
version of the model (without any source of ex ante or ex post heterogeneity), a regressive tax system allows for a positive average tax
rate (which finances G) while ensuring that the representative agent faces a zero marginal rate in equilibrium.

(iii) Now consider the role of uninsurable risk. To isolate this force, we focus on the case in which this is the only source of heterogeneity
and w = 0. The first-order condition (28) then simplifies to

0 = (1 − t∗
a) avy +

1
1 + s

⎡⎢⎢⎣1 − (1 − t∗
a)

− s
1+s

A−1
∑A−1

j=0

(
1 − t∗

j

) 1
1+s

⎤⎥⎥⎦ .

When vy > 0, the first term is increasing in age a, and to satisfy the first-order condition, t∗
a must therefore be rising in age (so as to

reduce the first term and make the second term more negative). The intuition is that permanent uninsurable risk cumulates with age
and the planner wants to provide more within-group risk sharing at ages when uninsurable risk is larger. Therefore, when vy > 0,
optimal progressivity increases with age, ceteris paribus. We label this force the uninsurable risk channel.

(iv) Now consider the role of insurable risk. Assume the other conditions of part (ii) of Proposition 4 are satisfied. The social welfare
first-order condition (28) is then

0 = (1 − t∗
a) vv +

1
1 + s

−
(

1 + w

1 + s

)[
1

1 − t∗
a

+
(

s + 1
s + t∗

a

)3

t∗
ave,a

]
N (a, t∗

a)

N̄ ({ta})
.

First, suppose ve,a is constant to isolate the role of age-invariant insurable wage variation. It is immediate that there is no motive for
age variation in ta (i.e., t∗

a = t∗). In addition, if t∗ > 0 (t∗ < 0), then increasing the level of insurable risk will reduce (increase) optimal
progressivity. The intuition is that when dispersion in insurable risk increases, the cost of setting t away from zero and distorting
efficient labor supply allocations increases.
Now, consider the impact of insurable risk that increases with age between age a and a + 1, ve,a+1 > ve,a. Suppose parameter values
are such that t∗

a is positive, and consider the optimal value for progressivity at age a + 1, t∗
a+1. It is clear that the derivative of the social

welfare function at a + 1 evaluated at t∗
a is negative (since N (a, t∗

a) and ve,a are both increasing in a). We have already established that
the social welfare expression is concave in ta for each age a. It follows that the optimal degree of progressivity at age a + 1 must be
less than at age a (i.e., t∗

a+1 < t∗
a), so that the {t∗

a} profile is downward-sloping between a and a + 1. The intuition is that when the
dispersion of the insurable risk increases with age, the cost of setting ta positive and thereby distorting labor supply increases with
age. We label this force the insurable risk channel.

(v) Now consider the role of the life cycle profiles of efficiency units and the disutility of work. What matters is the shape of the net profile,{
xa − v̄a

}
. To isolate the impact of this model ingredient, we eliminate all sources of within-age heterogeneity (h → ∞, vv = ve,a =

vy = 0). The optimal value for t at age a, t∗
a , is then the solution to the following simplified version of the first-order condition (28),

where we have substituted in the expression for effective hours (Eq. (23)):

1 − t∗
a =

⎡⎢⎢⎣ (1 + w) exp (xa − v̄a)

A−1
∑A−1

j=0

(
1 − t∗

j

) 1
1+s • exp

(
xj − v̄a

)
⎤⎥⎥⎦

1+s
s

=(1 + w)
exp

(
1+s
s (xa − v̄a)

)
A−1

∑A−1
j=0 exp

(
1+s
s

(
xj − v̄j

)) .

This optimality condition illustrates that ceteris paribus, the optimal t∗
a is lower the larger is xa − v̄a. Moreover, this effect is stronger

the higher is the Frisch elasticity (i.e., the lower is s). The intuition is that, absent age variation in t, hours worked will be independent
of productivity given our utility function and tax system. The planner can increase aggregate labor productivity and welfare by having

10 Note that as b → 1, t̄ → A−1 ∑A−1
j=0 ta .
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agents working longer hours when they are more productive and it is less costly for them to supply labor. When the profile for xa − v̄a

is upward sloping, this introduces a force for having progressivity decline with age. We label this force the life cycle channel.
Another way to understand this result is that the planner wants to smooth both consumption and the labor wedge (and thus the
effective marginal tax rate) over the life cycle. Earnings in this version of the model are given by ya = exp(xa − v̄a)(1 − ta)

1
1+s .

When xa − v̄a and thus earnings are increasing with age, the planner optimally chooses to let ka decrease with age in order to equate
consumption across age groups. The effective marginal tax rate at age a is 1 − ka(1 − ta)y−ta

a . Given a positive and age-invariant ta,
having ka decrease with age and ya increase with age would imply increasing marginal tax rates. But the planner can smooth marginal
tax rates by simultaneously letting ta decrease with age. This result is formalized in the following corollary.

Corollary 4.1 (optimal age-dependent taxation with life cycle only). Assume that h → ∞, and vv = ve,a = vy = 0 so that the only
heterogeneity in the economy is between ages and is driven by the profile for

{
xa − v̄a

}
. Then the optimal profiles {t∗

a ,k∗
a} implement the first

best. In particular, they equate both the labor wedge and consumption across age groups. The labor wedge is equal to one at all ages (the
marginal tax rate is zero). The average value for ta, A−1 ∑A−1

a=0 t
∗
a, is equal to −w.

In light of this last set of results on the role of the life cycle, it is clear that the life cycle productivity channel would be weaker if we
introduced opportunities for intertemporal trade. In particular, if households could borrow and lend freely, then hours would tend to naturally
covary positively with productivity over the life cycle, even absent age variation in ta. Similarly, the more easily consumption can be smoothed
intertemporally through markets, the less ka needs to vary across ages.11 In Section 7 we allow individuals to access a non-state-contingent
bond subject to a credit limit and explore this issue quantitatively.

5.2. Welfare with discounting and transitional dynamics

The steady-state welfare expression is tractable, making it easy to understand the various forces driving age variation in tax parameters.
However, a complete welfare analysis requires incorporating discounting and the transition because skill investment is an irreversible and a
dynamic forward-looking decision. Because of this irreversibility, a standard issue inherent in models with sunk investments arises: in the
short run, the government will be tempted to heavily tax high-skill individuals because such taxation is not distortionary ex post. This result
is related to the temptation to tax initial physical capital in the neoclassical growth model. In our context, the question is as follows: how does
this force affect optimal progressivity?

We therefore now assume b < 1 and consider an unanticipated policy change at date t = 0 from a pre-existing age- and time-invariant
policy C−1 = (k−1, t−1, G−1) to a new policy regime in which the new policy parameters can vary freely by both age and time. Let Ct ={
ka,t+a, ta,t+a, Gt+a

}A−1
a=0 denote the tax and spending policy that will apply to the cohort born at date t, and let Ut (Ct) denote the corresponding

expected lifetime utility.
Social welfare can be written as

W
({

Ct
}∞

t=−(A−1) ; C−1

)
≡ (1 − b)

⎡⎣ −1∑
t=−(A−1)

btUold
t (Ct ; C−1) +

∞∑
t=0

btUt (Ct)

⎤⎦ . (29)

The superscript “old” distinguishes the existing cohorts (t < 0) already alive at the time of the reform — whose skill investments were
made under the old age-invariant policy C−1— from future cohorts (t ≥ 0) whose skill investments are made under the new optimal system.
Note that remaining lifetime utility Uold

t for the old does not include any skill investment costs. Those investments were made in the past and
are sunk from the point of view of the government choosing a new policy.

To preserve tractability, we need to make one additional assumption relative to the baseline model, namely that production is segregated
across islands defined by birth cohort. This assumption is required because each cohort now faces a potentially cohort-specific profile for
progressivity, and thus the distribution for skill investment will be cohort-specific. The segregation assumption ensures that the distribution of
skills within each age-group island is always exponential.12 There is still a single economy-wide government budget constraint, so the planner
can use the tax and transfer system to reshuffle resources across islands.

The equilibrium hours worked and consumption allocations in this version of the economy are analogous to those described above for the
steady-state version, with the only difference being that the fiscal policy parameters in Eqs. (17)–(18) are now indexed by both age and time.
Skill investment decisions are modified as follows. Let

t̄a,t = Et−a

⎡⎣ (1 − b)

(1 − bA)

A−1∑
j=0

bjtj,t−a+j

⎤⎦ (30)

11 This effect also would not necessarily be operative if the age-wage profile were endogenous. Examples of endogenous age-wage profiles are models with learning by doing,
as in Imai and Keane (2004), and models in which skill investments take time away from work, as in Ben-Porath (1967).
12 Note that the key to tractability when analyzing the market for skills is that the distribution of skills is exponential (see Proposition 2). The problem with having different

cohorts working in the same labor market would be that different cohorts potentially make human capital investments, implying different skill distributions, and a combined
overall distribution of skills that would no longer be exponential.
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denote the expected discounted sequence for progressivity for the cohort entering the economy at date t − a. Note that for t − a < 0, t̄a,t = t−1,
while for t − a ≥ 0, t̄a,t = (1−b)

(1−bA)

∑A−1
j=0 bjtj,t−a+j.

Skill investment choices and skill prices for any cohort are given by the same expressions as in the baseline model, except that both are now
cohort-specific and depend on the expected sequence for progressivity t̄a,t . Because skill investment choices are irreversible, unanticipated
changes to the tax system have no impact on the skill distribution or skill prices for cohorts entering before date 0.

The Ramsey problem for the planner is now to choose
{{

ka,t+a, ta,t+a
}A−1

a=max{0,−t}
}∞

t=−(A−1)
and

{
Gt
}∞

t=0 to maximize Eq. (29) given the

expressions for equilibrium allocations and the government budget constraint.
How does incorporating transition change the optimal policy prescription? First, our steady-state characterizations for optimal spending

and for the optimal tax level parameters
{
ka,t

}
extend directly to the transition case.

Proposition 5 (optimal age-dependent taxation with transition). Taking the transition into account, the optimal tax system has the following
properties:

(i) At every date t, the optimal sequence
{
k∗

a,t
}

equalizes average consumption across age groups.
(ii) The optimal output share of government expenditures g∗

t is constant and given by

g∗
t =

w

1 + w
.

The logic for part (i) is that, as in the steady state, the ka,t parameters have no effect on labor supply or skill investment. The intuition for
part (ii) is related: given that the average level of taxation does not affect output, it is optimal to set the level of government spending to equate
the marginal utilities of public and private consumption.

To characterize the impact of incorporating transition on the optimal age profile of progressivity, we now focus on a special case of the
model in which heterogeneity in skills is the only source of heterogeneity. This strips out other sources of age variation in optimal progressivity
and allows us to focus on incentives of the planner to exploit the fact that past skill investments are sunk and therefore are insensitive to
changes in the tax system. This adds a new driver shaping optimal progressivity, which we label the sunk skill investment channel. To obtain
the sharpest characterization of this effect, we also assume inelastic labor supply.

Proposition 6 (optimal taxation with transition and inelastic labor supply). If (i) vv = vy = ve,a = 0, (ii) the age profiles for efficiency and
disutility of work are flat, and (iii) s → ∞ (labor supply is inelastic), then the optimal policy has the following properties: t∗

a,t = 1 for all a > t, and
t∗

0+j,t+j = t∗
0,t < 1 for all j = 1, . . . , A − 1 and for all t ≥ 0.

This result states that it is optimal to impose maximally progressive taxes on all cohorts who entered the economy before the tax reform at
date 0, whose past skill investments are sunk. This eliminates within-age-group consumption inequality for these cohorts, without imposing
any distortions. For cohorts who enter the economy after the reform, optimal progressivity is constant over the life cycle and less than one. It
is not optimal to push progressivity to the maximum because for these cohorts, progressivity reduces skill investment. Why is progressivity
constant over the life cycle? Consider the trade-offs from a marginal increase in t1,t+1 relative to t0,t, starting from a flat profile. Skill investment
at t is less sensitive by a factor b to t1,t+1 relative to t0,t (see Eq. (30)). At the same time, the gain in terms of reduced consumption inequality
from increasing t1,t+1 relative to t0,t is also discounted by a factor b, since it enters social welfare at t + 1 rather than at t.13

The characterization in Proposition 6 parallels the well known result that in models with physical capital, the Ramsey planner wants a
declining path for capital taxes in order to expropriate existing sunk capital without excessively discouraging new investment. In our economy,
the planner effectively expropriates the returns to past skill investments, without discouraging future skill investment. However, the key to
achieving this, in the context of our overlapping-generations economy, is to have progressivity vary by cohort, rather than by time, because
human capital is non-tradable, and the age of the potential human capital investor perfectly delineates whether or not the investment is sunk.14

6. Quantitative analysis

We now explore the quantitative implications of the theory. We begin with the problem of the planner that maximizes steady-state welfare
as in Section 5. Next, we solve for the optimal age-dependent tax system that incorporates discounting and transitional dynamics.

6.1. Parameterization

The parameterization strategy closely follows Heathcote et al. (2017). The model period is one year. Some of the parameters are set outside
the model. For our steady-state analysis, we focus on the case b = 1, since in this case ignoring transition is innocuous. When we move to
explore transition, we set b = 0.97, so that the path for policy and allocations during transition matters for social welfare.

Households live for A = 36 years, envisioning an age range between 25 and 60. The motivation for this choice is that our focus is on the
design of a tax and transfer system for the working-age population. In Section 7, we extend the analysis to a case with exogenous retirement.

13 Note that while optimal progressivity is constant within each cohort, it potentially varies across cohorts during transition.
14 We have also explored the optimal policy when the planner can vary progressivity by age but not by time/cohort. In particular, we suppose that the planner has to choose

a single age profile {ta} that will apply at every future date. We retain the assumption that the other fiscal parameter ka,t can vary freely by age and time. The key result in this
case is that when b < 1, and given the parametric assumptions listed in Proposition 6, the optimal policy incorporating transition features an increasing profile for ta . Given
Proposition 6, this result should come as no surprise: an increasing age profile for ta is a poor man’s approximation to the ideal policy, which dictates high progressivity for the
pre-existing old cohorts and low progressivity for new young cohorts.
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The preference weight on the public good w is identified directly from the size of the US government as a share of GDP, assuming that the
observed level of public consumption is optimal: given gUS = 0.19, we obtain w = 0.233. For calibration, we need to approximate the current
US tax and transfer system. Based on the estimates of Heathcote et al. (2017), we set tUS = 0.181.15 Given tUS and gUS, we then set kUS such
that the budget is balanced. We set s = 2, a value consistent with the microeconomic evidence on the Frisch elasticity (see, e.g., Keane, 2011).

Other parameters are structurally estimated. In Heathcote et al. (2017), we show that one can identify and estimate the elasticity of substi-
tution between skills h, preference heterogeneity vv, and the variances of wage risk vy, {ve,a}, using cross-sectional within-age variances and
covariances of male wages, male hours, and equivalized household consumption, which we measure from the Panel Study of Income Dynamics
(PSID) and the Consumer Expenditure Survey (CEX) for survey years 2000–2006. The identification follows from the closed-form expressions
for wages, hours, and consumption derived above.

To give a flavor of the identification, consider the following four moments:

vara (log wia) =
1
h2

+ vya + ve,a

vara (log hia) = vv +

(
1 − tUS

s + tUS

)2

ve,a

vara (log cia) =
(

1 − tUS
)2
(

vv +
1
h2

+ vya
)

cova (log hia, log wia) =

(
1 − tUS

s + tUS

)
ve,a (31)

The moments cova (log hia, log wia) observed at ages a = 0, . . . , A − 1 identify {ve,a}. Since in the data the profile for this variance increases
nearly linearly with age, we freely estimate the initial variance at age 25, ve,0, and then impose linearity. From vara (log hia) we then identify vv.
The value for var0 (log ci0) identifies h. Then, the change in vara (log wia) over the life cycle identifies vy. This is just one of the many possible
combinations of moments that yield identification. Our formal estimation procedure also allows for classical measurement error in all variables
and is based on an estimator that minimizes the distance between age-specific covariances in the model and the data. See Heathcote et al.
(2017) for additional details.

The parameter x controls the elasticity of the return to skills p1 to t̄ and h, where the return to skills is increasing in progressivity and
decreasing in skill substitutability (see Eq. (20)). In Heathcote et al. (2017), we exploit changes in p1, t, and h over time, which we can measure
from PSID data between the early 1970s and the early 2000s, to estimate x.

The only additions relative to the parameterization in Heathcote et al. (2017) are the age profiles for productivity and the disutility of work.
We estimate the life cycle profile of individual hourly wages and hours from our same PSID sample for years 2000–2006. The left panel of Fig. 2
plots both profiles, interpolated using a cubic function of age. The wage profile maps directly into the efficiency profile {xa}. Given {xa} and the
other parameter values, from the expression for average hours worked by age, Eq. (24), we can residually recover the profile for disutility of
work

{
v̄a
}
.

The right panel of Fig. 2 plots the implied profiles for {xa} and
{
v̄a
}

and for
{
xa − v̄a

}
, which is the one relevant for optimal age dependence

in progressivity. Note that this latter age profile is strongly hump-shaped, a feature that will be quantitatively important.16.
Table 1 summarizes the parameter values. Fig. 3 shows that the implied means and variances of logarithms for wages, hours, earnings, and

consumption by age align well with the ones estimated from cross-sectional data (see, e.g., Heathcote et al., 2014).

6.2. Results: steady-state welfare

In line with the analytical results in Section 4, we start by analyzing optimal taxation from a steady-state welfare point of view.
Recall that Proposition 4 identified three different forces that shape the optimal age profile of tax progressivity in steady state: uninsurable

risk, insurable risk, and life cycle variation in productivity and preferences. To understand the quantitative role of each of these forces, we start
from an economy where none of these channels is active, the one described in point (ii) of Proposition 4.

6.2.1. Channels that do not induce age dependence
Fig. 4 illustrates optimal progressivity by age

{
t∗

a
}

and the implied income-weighted average marginal tax rate (left panels) together with
age profiles for earnings, hours, and consumption (right panels).

The top two panels represent optimal policy in a representative-agent version of our economy, with all sources of heterogeneity shut down,
that is, h = ∞, vv = ve,a = vy = 0, {xa} ,

{
v̄a
}

constant, and b = 1. In this economy, t∗ = −w.

15 For this exercise, Heathcote et al. (2017) use data from the PSID for survey years 2000–2006, in combination with the NBER’s TAXSIM program. They restrict attention to
households aged 25–60 with positive labor income. When measuring pre-government gross household income, Heathcote et al. (2017) include labor earnings, private transfers
(alimony, child support, help from relatives, miscellaneous transfers, private retirement income, annuities, and other retirement income), plus income from interest, dividends,
and rents. To construct taxable income, for each household in the data they compute the four major categories of itemized deductions in the US tax code — medical expenses,
mortgage interest, state taxes paid, and charitable contributions — and subtract them from gross income. Post-government income equals pre-government income plus public cash
transfers (AFDC/TANF, SSI and other welfare receipts, Social Security benefits, unemployment benefits, workers’ compensation, and veterans’ pensions), minus federal, payroll,
and state income taxes. Transfers are measured directly from the PSID, while taxes are computed using TAXSIM.
16 It is worth noting that our approach to identifying

{
v̄a
}

hinges on our assumption of no intertemporal borrowing and lending. If households could perfectly smooth consump-
tion by borrowing and lending, one would naturally expect covariation between hours and wages over the life cycle, implying a smaller role for v̄a in generating age variation in
hours worked. We will therefore also study optimal policy abstracting from age variation in preferences for work
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Fig. 2. Left panel: life cycle profiles of individual wages and hours. Right panel: implied profiles for xa , v̄a , and xa − v̄a .

Next, in the middle panels, we add heterogeneity in the disutility of work by setting vv to its estimated value. Since this form of initial
heterogeneity translates into consumption dispersion, the planner wants to increase progressivity to redistribute from the lucky individuals
born with a low disutility of work to the unlucky ones who have a higher disutility and who thus work and earn less. Since this form of
heterogeneity is innate and does not vary by age, optimal progressivity remains flat.

In the bottom two panels, we activate skill investment by setting h to its estimated value and thus introduce heterogeneity in skills. The
optimal

{
t∗

a
}

profile remains flat but further increases in value. Two contrasting forces emerge: on the one hand, the planner can encourage
skill accumulation via a less progressive tax system. On the other hand, the utilitarian planner also wants to reduce consumption inequality
generated by heterogeneity in skills, and to do so, it must choose a more progressive system. Given our parameter values, this latter force
dominates, pushing up optimal progressivity.

Next, we introduce the channels that induce age dependence in optimal progressivity.

6.2.2. Uninsurable risk channel
Part (iii) of Proposition 4 states that because uninsurable risk in the form of permanent shocks cumulates over the life cycle, the planner

has an incentive to increase tax progressivity with age. To introduce this effect, we set the amount of uninsurable risk, vy, to its calibrated
value. The top panels of Fig. 5 illustrate that adding uninsurable risk has two effects. First, the average level of progressivity rises. Second, as
expected, the progressivity profile becomes upward sloping.

Introducing uninsurable risk also leads to an upward-sloping age profile for the income-weighted average marginal tax rate. This result
is reminiscent of findings in the recent literature on dynamic Mirrleesian optimal taxation, according to which, when income shocks are
persistent, the optimal average effective marginal tax rate has a positive drift over the life cycle. Farhi and Werning (2013) analyze Mirrlees

Table 1
Model parameterization (period = 1 year).

Parameter Description Value

A Years of working life 35
b Discount factor 0.97
s Inverse of Frisch elasticity 2
w Relative taste for public good 0.233
h Elasticity of substitution across skills 3.124
x Elasticity of skill investment to return 0.65
vv Heterogeneity in disutility of work 0.036
vy Variance of uninsurable productivity shock 0.0058
ve0 Initial variance in insurable productivity 0.090
Dve Growth in variance of insurable productivity 0.0044
{xa} Age profile for productivity See Fig. 2{
v̄a
}

Age profile for disutility of work See Fig. 2
tUS US rate of progressivity 0.181
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Fig. 3. Means (left panel) and variances of logs (right panel) over the life cycle.

taxation in a dynamic life cycle economy in which average productivity does not vary with age.17 In their numerical example, plotted in their
Fig. 2, the optimal history-dependent allocation is qualitatively similar to the allocation in our Fig. 5: the average effective marginal tax rate is
increasing in age, average output is decreasing in age, and average consumption is invariant to age.18

6.2.3. Insurable risk channel
According to part (iv) of Proposition 4, if the variance of insurable wage risk ve,a increases with age, the planner has an incentive to tilt the

schedule for optimal progressivity downward. The bottom panels of Fig. 5 illustrate that when we introduce our estimates for insurable risk,
the profile of optimal progressivity does indeed tilt in a clockwise direction. As a result, the life cycle profiles for hours and earnings become
flatter.

6.2.4. life cycle channel
We now add the last motive for age-varying progressivity identified in Proposition 4: age-varying profiles for labor efficiency and the

disutility of work. Fig. 6 plots two cases. In the top panels, the productivity and disutility profiles {xa} and
{
v̄a
}

are both switched on. Recall that
these two ingredients enter the expression for social welfare only via their net effect, {xa −v̄a}. In the bottom panels, only the labor productivity
profile {xa} is active.

Recall that the profile for
{
xa − v̄a

}
is generally increasing and strongly hump-shaped (see Fig. 2). Thus, optimal progressivity becomes both

flatter and more U-shaped when this life cycle channel is activated, relative to the same economy without age variation in wages or preferences
(see the bottom panels of Fig. 5). The intuition is that life cycle earnings have a pronounced hump shape in this calibration, and to counteract
the effect of this on consumption the planner sets a U-shaped age profile for ka. Absent age variation in ta, this in turn would translate into a
strongly hump-shaped profile for average marginal tax rates. By simultaneously setting a U-shaped profile for ta, the planner can moderate the
average marginal tax rate at peak productivity years. The desire to smooth taxes by age is familiar from the dynamic Mirrlees literature (Farhi
and Werning, 2012). The bottom panels of Fig. 6 show that the life cycle channel is weaker when we shut down age variation in preferences.

All channels are now operative, so this economy (the one with age variation in v̄a) should be viewed as our benchmark when focusing on
steady-state welfare. Note, however, that the quantitative importance of the life cycle channel is sensitive to the assumed market structure. As
we will see in Section 7, allowing for borrowing and lending dampens this channel.

6.2.5. Optimal age-dependent marginal tax rates
Fig. 7 plots the marginal tax rates implied by the tax system described in the top panels of Fig. 6 for three age groups. The optimal age-

dependent tax system dictates essentially a flat tax for middle-aged workers and a highly progressive schedule for young and old.
Note that even though the degree of optimal progressivity is lower for the old than for the young, marginal (and average) tax rates are much

higher for the old for a wide income range. Mechanically, this reflects the fact that the old face smaller values for ka in order to redistribute
income to the young and thereby equalize consumption across ages. When evaluating the optimal tax system at the endogenous distribution
of earnings, the income-weighted average marginal tax rate — calculated across individuals in each age group — is increasing in age (Fig. 6).

17 They also assume no endogenous skill accumulation, no preference heterogeneity and no valued government expenditures.
18 Golosov et al. (2016) show that with negatively skewed log-income shocks, the positive drift in the labor wedge is stronger in the left tail of the income distribution.
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Fig. 4. Left panels: optimal progressivity and income-weighted average marginal tax rate. Right panels: average earnings (Y), hours (H), and consumption (C) by age. Top two
panels: Representative-agent model. Middle two panels: previous case plus heterogeneity in disutility of work. Bottom two panels: previous case plus heterogeneity from skill
investment.
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Fig. 5. Left panels: optimal progressivity and income-weighted average marginal tax rate. Right panels: average earnings (Y), hours (H), and consumption (C) by age. Top two
panels: previous case plus uninsurable risk. Bottom two panels: previous case plus insurable risk.

6.2.6. Welfare gains from tax reforms
We now present the welfare gains of switching from the existing tax/transfer system to the optimal age-dependent system. As with all the

results presented to this point, we focus on the case b = 1, so that we can safely ignore transition when comparing different tax systems.
We begin by reporting the gains of switching to the optimal age-invariant system. Next we consider the gains of switching to a system

where we allow for age variation in ka but not in ta. Then we explore the opposite configuration. Finally, we compute the gains from switching
to the fully age-dependent system. All these welfare gains refer to steady-state welfare and are computed in terms of lifetime consumption-
equivalent variation. The first column of Table 2 summarizes these results.

The welfare gains of moving from the existing tax system (with tUS = 0.181) to the optimal age-invariant tax schedule are small. Moving
to the optimal age-varying system delivers welfare gains of 2.4% of consumption. A large portion of this welfare gain arises from endowing the
planner with the ability to use the tax system to redistribute across age groups, so as to equate expected consumption by age. In particular,
the specification in which ka can vary freely by age but ta cannot achieve most of the maximum welfare gains from tax reform. However, our
baseline parameterization likely exaggerates the potential welfare gains from redistribution across age groups, for two reasons. First, it assumes
age-invariant utility from consumption: introducing age-varying utility would imply smaller potential gains from redistribution across age
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Fig. 6. Left panels: optimal progressivity and income-weighted average marginal tax rate. Right panels: average earnings (Y), hours (H), and consumption (C) by age. Top panels:
previous case plus life cycle channel, age profile for disutility of work as estimated (i.e., all channels operational). Bottom panels: age profile for disutility of work constant.

groups. We study this case in Section 6.4. Second, our baseline parameterization assumes no borrowing and lending, giving the government a
crucial role in smoothing consumption over the life cycle. We extend the model to intertemporal trade in Section 7.

6.3. Results: transitional dynamics

We now compute the age-dependent tax system that maximizes welfare taking into account transitional dynamics and the sunk invest-
ment channel, that is, the fact that cohorts born before the reform cannot adjust skills in response to a surprise change in the tax system. In
particular, consider a tax reform at date 0 that implements a flexible age- and time-specific tax policy

{
ka,t , ta,t , Gt

}
for a = 0, . . . , A − 1 and

for t = 0, . . . , ∞. We set the annual discount factor to b = 0.97.
The importance of the sunk investment channel depends on the tax system in place in the initial steady state. We assume that this system

features the age-invariant value for progressivity tUS = 0.181 and the age-invariant kUS that balances the budget given gUS.
We emphasize that this is an ambitious exercise because there is a large number of policy parameters to optimize. Doing so is only feasible

because, conditional on the tax parameters, equilibrium allocations can be characterized in closed form. In addition, the problem is simplified
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Fig. 7. Marginal tax rates at different ages for the optimal age-dependent policy with b = 1 (i.e., those that maximize steady-state welfare).

Table 2
All numbers in the table are welfare gains expressed as additional lifetime consumption (percentage
points) relative to the existing tax/transfer system. The column labeled “Benchmark” refers to the bench-
mark economy without intertemporal trade (autarky). The column “US BL” refers to the economy with
borrowing and lending under the calibrated borrowing limit for the US economy (half annual earnings).
The column labeled “Natural BL” refers to the economy with borrowing and lending under the natural
borrowing limit. These last two economies are solved in general equilibrium.

Benchmark US BL Natural BL

(k∗ , t∗) constant 0.10 0.15 0.18
k∗ constant, t∗ age-varying 1.69 1.15 0.67
k∗ age-varying, t∗ constant 2.10 1.63 1.36
(k∗ , t∗) age-varying 2.42 1.78 1.39

because, by virtue of Proposition 5, the planner will optimally set
{
ka,t

}
such that (i) consumption is equalized across age groups at each date,

and (ii) the ratio of government spending to output is always equal to w/(1 + w). To economize slightly on the number of policy parameters
to solve for, we assume a three-year period length with each cohort active for A = 12 periods and adjust other parameters accordingly.19

We plot optimal policy for two parameterizations (Fig. 8). In the first (top panel) differences in skills are the only source of heterogeneity.
The second (bottom panel) is our baseline economy incorporating all sources of heterogeneity (but with b = 0.97 rather than b = 1). In both
plots, each different colored line plots the sequence for

{
ta,t+a

}
for a particular cohort. The line starts at the date t that the cohort enters the

economy and ends at t + 11. Lines for cohorts that entered the economy prior to the reform at date 0 are shorter: there is a single point for
the cohort that entered at t = −11.

In the first parameterization (top panel of Fig. 8), the optimal policy involves relatively high values for progressivity for cohorts entering
prior to the reform and lower values for cohorts entering after the reform. It is not optimal to set ta,t = 1 for cohorts entering prior to the
reform because even though the skill investments for these cohorts are sunk, cohort labor supply still responds negatively to progressivity. The
cohort-specific profiles for ta,t are generally upward sloping (rather than flat) until all the cohorts alive at the time of the reform have exited
the economy. The logic for this result is that aggregate output gradually increases during the post-reform transition, as successive cohorts
make skill investments given much lower expected progressivity values t̄a,t than in the pre-reform steady state. As output increases over time,
the planner gradually becomes less focused on stimulating additional output (via low values for progressivity) and more focused on reducing
inequality (via high values for progressivity). Thus, during transition, optimal progressivity increases both within cohorts (the upward-sloping
profiles) and between profiles (each successive cohort’s profile starts at a higher level).20

Now consider optimal policy incorporating transition for the baseline model (bottom panel of Fig. 8). For any given cohort, the optimal
profile

{
ta,t+a

}
is now U-shaped, as in Fig. 6. Moving across cohorts, it is clear that on average, progressivity is higher for cohorts entering

prior to the reform and lower for cohorts entering later, as in the simpler economy described previously. In addition, progressivity generally
increases modestly over time post-reform.

6.4. Extension I: age variation in the taste for consumption

In this section, we generalize our baseline model by introducing life cycle variation in the taste for consumption. The most straightfor-
ward way to interpret this additional model ingredient — and the one we will use to calibrate this version of the model — is that household

19 We assume that the economy converges to a new steady state within 156 periods and thus solve for 12 × 156 = 1872 values for ta,t .
20 The planner’s first-order conditions can be used to establish the result that age profiles for progressivity are upward sloping when output is rising. Contemplate a candidate

optimal policy with the property t0,t = t1,t+1 such that the first-order condition for t0,t (Eq. (A26)) is satisfied. Now consider the first-order condition for t1,t+1. Substituting Eq.
(A28) into Eq. (A27), it is clear that on the margin, it will be welfare-improving to increase t1,t+1 above t0,t if and only if the second term on the right-hand side of Eq. (A27) is
positive, which will be the case when Yt < Yt+1. Thus, if a cohort will live through a period of rising output, it will optimally face an increasing age profile for progressivity.
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Fig. 8. Optimal age and time-dependent progressivity incorporating transition. Top panel: Skills are the only source of heterogeneity. Labor supply is elastic. b = 0.97. Bottom
panel: Baseline calibration. b = 0.97.

consumption demand changes as individuals form couples, have children, and children age and eventually leave to form households of their
own.

The implication for the planner is that a portion of consumption variation over the life cycle is efficient. This reduces the desire to
redistribute across ages through ka, which, in turn, weakens the life cycle channel that induces a U-shaped optimal profile for ta.

We modify our period utility function to

ui (cia, hia, G) = exp((1 + s)ca) log cia − exp [(1 + s) (v̄a + vi)]
1 + s

(hia)
1+s + w log G, (32)

where ca > 0 shifts the marginal utility of consumption at age a. Consumption and hours allocations for this model are

log c (v, s, a,a) = logka + (1 − ta)

[
log p(s, t̄) + xa + a +

log(1 − ta)
1 + s

− (v + v̄a − ca)
]

+ Ca

log h (v, a, e) =
log(1 − ta)

1 + s
− (v + v̄a − ca) +

(
1 − ta

s + ta

)
e − 1

s + ta
Ca.

A higher value for ca implies a higher marginal value of a unit of consumption and thus a higher optimal consumption level. The age-
dependent utility shifter ca also affects the individual labor supply decision: at ages when ca is high, individuals choose to work more in order
to consume more. As a result, ca enters the two terms in the welfare function that capture the average disutility of work and the effective
hours worked by each skill type. Moreover, ca shifts the relative marginal utility of consumption across ages, and as a result, it modifies the
cost of consumption dispersion between and within skill types, the last two terms of the welfare function.

Following the same steps we delineated to construct the steady-state welfare expression in the baseline economy, we obtain an analogous
welfare expression for the model with life cycle variation in the taste for consumption. The modified expression for steady-state welfare for
the case b = 1 is in the Appendix.



J. Heathcote, K. Storesletten and G.L. Violante / Journal of Public Economics 189 (2020) 104074 21

25 30 35 40 45 50 55 60

Age

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Pr
og

re
ss

iv
ity

Marginal Tax Rate

25 30 35 40 45 50 55 60

Age

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y,
 C

, a
nd

 H

Earnings
Consumption
Hours

Fig. 9. Optimal age-dependent progressivity with age variation in the taste for consumption.

We now turn to the parameterization of this model. From the expressions for equilibrium individual allocations, it is immediate that ca
and v̄a cannot be separately identified from data on hours worked or consumption. We therefore resort to the interpretation of the term
(1 + s)(ca − ca−1) as the log change in the consumption equivalence scale between ages a − 1 and a due to changes in family size. Given
s = 2, we estimate the age profile for ca from Fernandez-Villaverde and Krueger (2011), who compute an average across the most commonly
used equivalence scales. Then, given the vector

{
ca
}
, we estimate

{
v̄a
}

residually from the age profile for hours worked, as under the baseline
calibration.

The Fernandez-Villaverde and Krueger equivalence scale increases by roughly 25% from age 25 to age 50 and declines moderately thereafter.
The implied estimated path for the utility shifter ca follows a similar profile. From the viewpoint of the planner who has to set tax rates
optimally, older households should now receive higher consumption. Relative to the benchmark case, the planner therefore redistributes less
across ages and, as a consequence, chooses flatter profiles for both ka and ta. This implies smaller potential welfare gains from moving to an
age-varying tax system. Fig. 9 depicts optimal age-dependent progressivity in this case.

6.5. Extension II: age variation in the Frisch elasticity

In this section, we allow older workers’ labor supply to become more elastic to changes in after-tax wages as they approach full retirement.
Direct evidence on labor supply elasticities around retirement is scarce, but the few estimates cited in the survey by Blundell et al. (2016),

suggest that the Frisch elasticity may be up to three times higher at ages 60–65 compared to age 45.
We now introduce age-varying elasticities in a simple mechanical fashion, assuming that the Frisch elasticity is constant at a value of 0.5 up

to age 45 and then increases linearly to reach 1.5 at age 60. Fig. 10 illustrates that this increase in the elasticity eliminates the rise in optimal
progressivity after age 45. For example, in the baseline (Fig. 6) t∗

60 = 0.17, whereas in this extension, it is roughly zero. Thus, this late-in-life
labor supply elasticity channel is quite powerful in moderating the rise in optimal progressivity for the elderly.
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Fig. 10. Optimalx age-dependent progressivity when the Frisch elasticity of labor supply increases after age 45.
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7. Introducing borrowing and lending

The main limitation of the benchmark model is that, to preserve
analytical tractability, we shut down borrowing and lending. The
risk sharing allowed in the model against insurable shocks offers
some private redistribution within age groups, but only the plan-
ner can redistribute resources across age groups. Thus, one driver of
age variation in optimal taxation is the planner’s desire to facilitate
intertemporal consumption smoothing.

The key concern is that, if private saving and borrowing were
allowed, households would use financial markets to smooth con-
sumption intertemporally, and the life cycle channel in the design
of optimal taxes would therefore be weakened. The extent to which
the optimal policy will change will depend on the generosity of
borrowing limits.

In this section, we extend the benchmark model by allowing
households to trade a risk-free bond in zero net supply, with the
interest rate r determined in the stationary equilibrium of the model.
At the same time, we shut down insurable risk (i.e., we set ve,a = 0).
In this model, wealth b is a state variable for the individual, and
the steady state features a non-degenerate wealth distribution. As
a result, the equilibrium and the optimal age-dependent tax system
have to be computed numerically. The optimal tax problem is rather
complicated since in principle one has to choose a vector of A = 36
values for ta, one for each age, in order to maximize equilibrium
welfare.

Having introduced wealth and savings, we now need to decide
how to tax them. Exploring the optimal differential taxation of
earnings versus savings is beyond the scope of the paper. We there-
fore simply assume that taxable income at age a includes capital
income rbia but that savings bi,a+1 − bia are tax deductible. Thus,
the parametric tax/transfer function now applies to taxable income
p(si)exp(xa + aia)hia + rbia − (bi,a+1 − bia), and the individual budget
constraint becomes

cia = ka[p(si) exp(xa + aia)hia + (1 + r)bia − bi,a+1]1−ta .

This assumption is convenient because it allows us to retain a
closed-form solution for the equilibrium skill price function p(s).
Note that this tax specification also has the property that the planner
effectively taxes consumption in a progressive fashion.

We also need to specify borrowing limits. We assume that the
borrowing limit for individual i at age a can be written as

bi,a+1 ≥ −b̄a • p(si) exp(aia − vi),

where {b̄a} are age-varying parameters. Note that this specification
implies that borrowing limits are proportional to the idiosyncratic
components of individual wages and preferences. Every other ele-
ment of the baseline model is unchanged.

The dynamic program of a working-age household characteriz-
ing optimal consumption/saving and labor supply decisions now has
five state variables: age a, skills s, disutility of work v, productivity a,
and wealth b. Given the form of the borrowing constraint, however,
it is possible to characterize optimal individual saving and labor sup-
ply decisions by solving a simpler household problem with only two
states: age a and normalized wealth, defined as wealth b relative to
the adjustment factor p(s) exp(a − v) (see Appendix B for details).

7.1. Parameterization

The parameterization is the same as the one in Table 1, with the
exception that the variances of the insurable risk terms are zero at
each age. The discount factor is fixed at b = 1. The only new param-
eters are the age-dependent borrowing limits. When the borrowing

limit parameters {b̄a} are set to zero at all ages, the wealth distribu-
tion is degenerate at zero, since assets are in zero net supply. In this
case, the equilibrium coincides with the one of the benchmark model
(modulo the absence of insurable risk). The loosest possible limits
are natural borrowing constraints: in this case, the only binding con-
straint over the life cycle is biA ≥ 0, that is, a no-Ponzi condition
stating that the household cannot die with negative wealth.

To set borrowing limits that realistically capture how much con-
sumer credit households can access, we adopt the following strategy.
We use cross-sectional data from the Survey of Consumer Finances
(SCF) for the year 2012 (2013 survey) for households aged 25–60, as
in the model. The SCF has information on credit limits on all credit
cards and on home equity lines of credit. We begin by adding up all
these limits.

The SCF also contains information on the residual value of exist-
ing installment loans for vehicles, boats, and other durables, and on
residual values of other loans, such as borrowing against IRAs. We
multiply the value of these loans by a factor of two to reflect the fact
that, on average, households are halfway through their repayment.

We sum up these two numbers obtained from credit limits and
existing loans, and express this total borrowing limit as a fraction of
household labor income. This approach suggests that almost 20% of
US households have a credit limit of zero. The median credit limit
is about one third of annual earnings. However, it is plausible that
some households could access additional credit if they wanted to do
so. With this in mind, we set the age-specific credit limit to 0.5 times
annual household earnings at the corresponding age.21

Finally, to keep the Ramsey problem of the government manage-
able, instead of optimizing over the full vector of ta for each age,
we approximate the ta function with a Chebyshev polynomial of
order two and optimize over its three coefficients.22 Moreover, we
assume that the planner maximizes steady-state welfare, which is
reasonable given our assumption that b = 1.

7.2. Results

Fig. 11 plots age profiles for wages, hours worked, and consump-
tion (left panel) and for wealth (right panel) in the economy with
tUS and with the US credit limit. The age profile for wealth illus-
trates that young households borrow as much as they can against
future earnings. This reflects the fact that the amount of unsecured
credit available is quite limited in this calibration. After age 45, when
the productivity profile levels off, households become net savers and
start lending to the young.

Fig. 12 summarizes our findings on the optimal tax scheme in this
extended economy with intertemporal trade. The top three panels
consider the case in which the gross interest rate is fixed exogenously
at R = 1. The bottom three panels consider the case in which the
interest rate is endogenous and adjusts to clear the market for bonds.
In each case, three parameterizations are plotted: one “risk only” in
which the life cycle profiles {xa} and {v̄a} are flat; a second “life cycle
only” in which the variance of life cycle productivity shocks is set to
zero; and a third “risk + life cycle” which corresponds to the baseline
parameterization. Each panel has three lines, corresponding to three
alternative assumptions on the scope for borrowing: zero borrowing,

21 Note that since ours is a single asset model, this limit is best thought of as the
amount that can be borrowed in excess of the value of household assets, i.e., as
unsecured borrowing. In reality, the majority of household debt is collateralized by
housing assets, but since acquiring mortgage debt requires acquiring housing assets,
such secured credit is not useful for smoothing non-durable consumption over the life
cycle.
22 We have verified that polynomials of order three yield only negligible additional

welfare gains.
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Fig. 11. Left panel: means of wages, earnings, consumption, and hours worked over the life cycle. Right panel: average wealth-income ratio over the life cycle.

the calibrated borrowing limit for the US economy, and the natural
borrowing limit.23

7.2.1. Risk only
The left panels of Fig. 12 illustrate that, absent systematic life

cycle earnings variation, allowing for intertemporal borrowing and
lending has little impact on the optimal age profile for progressivity.
In each case, the optimal profile for ta is driven by the uninsurable
risk channel, which calls for progressivity to increase with age.

7.2.2. Life cycle only
Consider now the models in which there are no productiv-

ity shocks (middle panels). Recall from Proposition 4 that absent
idiosyncratic risk (either uninsurable or insurable), the only motive
for introducing age variation in the tax system in the autarkic version
of the economy was to enable the planner to equate consumption
across age groups. But when households can borrow and lend, they
will use the bond to consumption-smooth predictable life cycle vari-
ation in earnings. In fact, if R is fixed exogenously and equal to
1/b = 1 (middle panel in the top row of Fig. 12), then given a suf-
ficiently loose borrowing limit, agents will use the bond to achieve
constant consumption over the life cycle, absent any age variation
in the return to saving induced by age variation in tax parameters.
Because a constant consumption profile is exactly what the plan-
ner wants, the planner has no incentive to introduce any such age
variation. This explains why, in the natural borrowing limit case, the
profile for t∗

a is flat.
When we endogenize the interest rate, the optimal ta profile

in the same specification (life cycle only, natural borrowing limit –
the middle panel in the bottom row) looks quite different and now

23 In the endogenous interest rate economy, given that bonds are in zero net supply,
ruling out borrowing also implies no saving in equilibrium. In the exogenous interest
rate economy, we rule out borrowing, but allow saving.

declines significantly over the life cycle. This reflects a new chan-
nel mediating the optimal age profile for progressivity, which we
label the interest rate channel. Under the natural borrowing limit,
every agent is on her Euler equation throughout the life cycle. Given
our calibrated parameter values — and in particular, a generally
increasing age profile for average earnings — the equilibrium market-
clearing interest rate is positive and thus exceeds the household’s
rate of time preference. It follows that, absent age variation in either
ka or ta, households would choose positive consumption growth
over the life cycle. However, as in every economy we have consid-
ered, the planner wants to equate consumption across age groups. To
achieve this, it must choose profiles for ka and ta with the property
that the after-tax interest rate is reduced to zero at each age. It can
achieve this by choosing a declining path for ka, that depresses after-
tax returns. Given a decreasing profile for ka, it is also optimal to have
ta decrease in age in order to avoid a rising labor wedge.

When borrowing and lending are ruled out, the optimal profile
for progressivity in the life-cycle-only economy is driven entirely by
the life cycle channel and is U-shaped and mirrors (inversely) the
efficiency net of work disutility profile. Under the US borrowing lim-
its, the progressivity profiles are intermediate between those under
the autarky and natural borrowing constraint extremes. The optimal
profile in the endogenous interest rate case is more downward slop-
ing than when the interest rate is fixed at zero because the interest
rate channel is operative in this case.

7.2.3. Risk + life cycle
When both the risk and life cycle channels are present, as in the

baseline model specification plotted in the right panels, the optimal
profile for ta is always a compromise, roughly averaging the pro-
files dictated by the uninsurable risk channel (left panels) and the life
cycle and interest rate channels (middle panels).

In autarky, the age profiles for t∗
a essentially coincide with the

one in our benchmark model (Fig. 6, top left panel), modulo the
absence of insurable risk in this parameterization. Under the cali-
brated US borrowing limit, the optimal profiles are close to those
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Fig. 12. Economy with intertemporal trade. Left panels: uninsurable risk channel only. Middle panels: life cycle channel only. Right panels: both channels active. In each panel,
the three lines correspond to a zero borrowing limit, an ad hoc borrowing limit estimated from SCF data, and the natural borrowing limit. In the top row, the interest rate is set
exogenously so that R = b−1 = 1. In the bottom row, the interest rate clears the bond market.

in autarky, suggesting that our previous analysis of the tractable
autarkic case offers qualitatively and quantitatively relevant guid-
ance on how taxation should vary by age. At the same time, when we
impose very loose borrowing limits, the optimal policies look quite
different from autarky and vary dramatically between the exogenous
and endogenous interest rate cases.24

7.3. Welfare from tax reform with intertemporal trade

The last two columns of Table 2 summarize the welfare gains
from switching to the optimal tax system under the US and natu-
ral borrowing limits in the endogenous interest rate case. Under the
US borrowing limit, the gains from moving to an age-dependent tax
system are somewhat smaller than in the autarky case but are still
substantial at around 1.8% of lifetime consumption. Under the natu-
ral borrowing limit, welfare gains shrink further to about half of the
gains in autarky. As expected, the bulk of these gains can be obtained
even with an age-invariant t.

8. Conclusions

This paper has developed an equilibrium framework to study
the optimal degree of progressivity in the tax and transfer system

24 In Appendix B we consider an extension of the model with a retirement phase and
a pension system. We find high optimal progressivity in the retirement phase, offset by
somewhat lower progressivity during the working phase of life, relative to the model
without retirement.

over the life cycle. Building on Heathcote et al. (2017), the main
innovation in this paper is to allow for age-dependent tax progres-
sivity. When calibrating the analytically tractable economy without
intertemporal trade to the US we find that the optimal age profile
for tax progressivity is U-shaped, while the average marginal tax is
increasing and concave in age. This U shape survives, but is moder-
ated, in a more realistic version of the model with borrowing and
saving and calibrated credit constraints. In this economy, the welfare
gains of switching from the current age-invariant tax and transfer
system to the optimal age-dependent system are around 1.8% of
lifetime consumption. The optimal system and the corresponding
welfare gains are sensitive to the extent of age variation in the taste
for consumption and leisure, and to the pattern of age variation in
the elasticity of labor supply.

We conclude the paper with a short discussion of elements not
included in our model that may be relevant for age dependency in
the optimal tax system.

One shortcoming of our analysis is the assumption that the age-
wage profile is exogenous. Various authors have argued that the
age-wage profile is instead endogenous, and reflects human capital
investments and learning by doing over the life cycle (Ben-Porath,
1967; Imai and Keane, 2004). Such endogeneity could potentially
have interesting implications for optimal taxation (Keane, 2011).

Our model with borrowing and lending integrates taxation of
wealth within our baseline two parameter tax and transfer system.
Introducing a separate and potentially age-varying tax on savings
would give the planner direct control over the return to saving. This
additional instrument would weaken the interest rate channel, a
force that induces progressivity to decline with age. An even more
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ambitious direction for future research would be to introduce capital
explicitly as an input to production, and to explore a comprehensive
joint analysis of optimal labor and capital taxation.

To maintain tractability we modeled the cost of skill acquisi-
tion as a utility cost. However, some of the costs of acquiring skills
are in the form of time or money. A richer model of skill invest-
ment costs would better situate the model to address policy issues
involving trade-offs between tax progressivity and education subsi-
dies (see e.g. Bovenberg and Jacobs, 2005; Krueger and Ludwig, 2016;
Stantcheva, 2017).

Finally, one could enrich our life cycle model to address the
extent to which age variation in marriage rates, fertility choices, and
mortality risk call for age variation in the optimal tax and transfer
system. For example, age variation in taxation can potentially substi-
tute for missing private markets against longevity risk in the spirit of
Hosseini and Shourideh (2019).

While all these extensions will add new trade-offs and possibly
affect quantitative predictions about optimal taxation, the qualita-
tive forces motivating age variation in tax progressivity we have
described will remain salient.

Appendix A. Proofs

This appendix proves all of the results in the main body of the paper.

A.1. Proof of Proposition1 [hours and consumption]

We only sketch this proof, since it follows the ones in Heathcote et al. (2014, 2017), which contain more comprehensive versions. We solve
the model by segmenting production on “islands” indexed by age a and by the uninsurable triplet (v,a, s). The (a,v,a, s) island planner’s
problem, taking the island-specific skill prices p(s, t̄) and the aggregate fiscal variables

(
G,
{
ka
}

, {ta}
)

as given, is

max{ca ,ha}
∫ {

log ca − exp [(1 + s) (v + v̄a)]
1 + s

ha(e)1+s + w log G
}

dFe

subject to the island-level resource constraint (the equivalent of the no-bond-trading assumption):

ca = ka

∫
exp [(1 − ta) (p(s, t̄) + xa + aa + e)] ha(e)

1−ta dFe .

The first-order conditions with respect to ca and ha(e) are, respectively,

c−1
a =M

exp [(1 + s) (v + v̄a)] h(e)s =Mka(1 − ta) exp ((p(s, t̄) + xa + a) (1 − ta)) exp (e(1 − ta)) h(e)−ta

where M is the multiplier on the island resource constraint. Combining the two conditions gives

h(e) = c
− 1

s+ta
a (ka (1 − ta))

1
s+ta exp

(
− (1 + s)

(s + ta)
(v + v̄a)

)
exp

(
(p(s, t̄) + a + xa + e)

(1 − ta)
(s + ta)

)
(A1)

Note that from the first-order conditions, ca is the same for all agents on the island, and as such it cannot depend on e. Using this fact, and
substituting Eq. (A1) into the planner’s island-specific resource constraint, yields

ca =kac
− 1−ta

s+ta
a (ka (1 − ta))

1−ta
s+ta exp

(
− (1 − ta) (1 + s)

(s + ta)
(v + v̄a)

)
•

∫
exp [(1 − ta) (p(s, t̄) + xa + aa + e)]

[
exp

(
(p(s, t̄) + a + xa + e)

(1 − ta)2

(s + ta)

)]
dFe .

After a few steps of algebra, one obtains the expression for allocations in Proposition 1.

A.2. Proof of Proposition2 [skill price and skill choice]

The education cost is given by v(s) = j−1/x

1+1/x
(s)1+1/x, where j is exponentially distributed, j ∼ g exp (−gj). Recall from Eq. (14) in the main

text that the optimality condition for skill investment is

v′(s) =
(

s
j

) 1
x

= E0

(
1 − b

1 − bA

) A−1∑
a=0

ba ∂u (c (v,a, s; ka, ta, t̄) , h (v; ta) , g)
∂s

. (A2)
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The skill level s affects only the consumption allocation (not the hours allocation) and only through the skill price p. With some abuse
of notation, we denote the skill price as a function of the entire sequence {ta}; p (s; {ta}) and we later show that p is a function of only s
and t̄.Hence, using Eq. (18), Eq. (A2) can be simplified as

(
s
j

) 1
x

=
A−1∑
a=0

ba (1 − ta)
∂ log p (s; {ta})

∂s
.

We now guess that the skill price function is log-linear in the skill choice,

log p (s; {ta}) = p0({ta}) + p1({ta}) • s, (A3)

which implies that the skill allocation has the form25

s(j; {ta}) = [p1({ta}) • (1 − t̄)]x •j, (A4)

where t̄ can be interpreted as a discounted expected progressivity rate,

t̄ ≡
(

1 − b

1 − bA

) ∞∑
a=0

bata.

We henceforth write p as a function of s and the effective progressivity rate, t̄. Since the exponential distribution is closed under scaling,
skills inherit the exponential density shape from j, with parameter f ≡ g[(1 − t̄)p1 ({ta})]−x, and its density is m (s) = f exp (−fs). We now
turn to the production side of the economy. Effective hours worked N̄ are independent of skill type s (see Proposition 1). Aggregate output is
therefore

Y =

{∫ ∞

0

[
N̄ • m(s)

] h−1
h ds

} h
h−1

.

The (log of the) hourly skill price p (s, t̄) is the (log of the) marginal product of an extra effective hour supplied by a worker with skill s, or

log p (s, t̄) = log

⎡⎣ ∂Y

∂
[
N̄ • m(s)

]
⎤⎦ =

1
h

log Y − 1
h

log
[
N̄ • m(s)

]

=
1
h

log
(

Y

N̄

)
− 1

h
log f +

f

h
s. (A5)

Equating coefficients across Eqs. (A3) and (A5) implies p1({ta}) = f
h = g

h [(1 − t̄)p1({ta})]−x, which yields

p1 ({ta}) =
(
g

h

) 1
1+x

(1 − t̄)
− x

1+x (A6)

and thus the equilibrium density of s is

m(s) = (g)
1

1+x

(
h

1 − t̄

) x
1+x

exp

⎛⎝−(g)
1

1+x

(
h

1 − t̄

) x
1+x

s

⎞⎠ . (A7)

Similarly, the base skill price is

p0({ta}) =
1
h

log
(

Y

N̄

)
− log

( g
h

)
h (1 + x)

+
x

h (1 + x)
log (1 − t̄) . (A8)

We derive a fully structural expression for p0({ta})in the proof of Corollary 2.2 when we solve for Y and N̄ explicitly. From now on, we drop
the vector notation {ta} and simply express the equilibrium functions as functions of t̄ (i.e., s (j, t̄), p1 (t̄), and p0 (t̄)).

25 To see this, note that per assumption ∂ log p (s; {ta}) /∂s = p1({ta}), so Eq. (A2) can be written as

(
s
j

) 1
x

= (1 − bd)
∞∑

a=0

(bd)
a
(1 − ta)p1({ta})

=p1({ta})
(

1 − (1 − bd)
∞∑

a=0

(bd)
ata

)
.
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A.3. Proof of Corollary 2.1 [distribution of skill prices]

The log of the skill premium for an agent with ability j is

p1 (t̄) • s(j; t̄) = p1(t̄) • [(1 − t̄)p1(t̄)]x •j =
g

h
•j,

where the first equality uses Eq. (A4), and the second equality follows from Eq. (A6). Thus, log skill premia are exponentially distributed with
parameter h. The variance of log skill prices is

var (log p(s; t̄)) = var (p0(t̄) + p1(t̄) • s(j; t̄)) =
(
g

h

)2

var(j) =
1
h2

.

Since log skill premia are exponentially distributed, the distribution of skill prices in levels is Pareto. The scale (lower bound) parameter is
exp(p0(t̄)), and the Pareto parameter is h.

A.4. Proof of Corollary 2.2 [aggregate quantities]

From Eq. (17) and the assumption that v and e are independent, aggregate hours worked by individuals of age a are

H (a, ta) = E [h (v, e, a; ta)] =
∫ ∫

h (v, e, a; ta) dF(v)dFa(e) (A9)

= exp

(
log(1 − ta)(

1 + ŝa
)
(1 − ta)

− (1 − ta(1 + ŝa))

(ŝa)
2

•
ve,a

2

)
(A10)

•

∫
exp

(
e

ŝa

)
dFa(e)

∫
exp (− (v + v̄a)) dF(v)

=(1 − ta)
1

1+s • exp (−v̄a) • exp

[(
ta
(
1 + ŝa

)
ŝ2

a
− 1

ŝa

)
ve,a

2

]
.

Since a, e, and v are independent, it follows that N (a, ta) = exp(xa) •E [exp(a)] •E [exp(e)h (v, e, a; ta)] = exp (xa) (1 − ta)
1

1+s exp[(
ta(1+ŝa)

ŝ2
a

+ 1
ŝa

)
ve,a

2

]
, and therefore

N (a, ta) = exp(xa +
ve,a

ŝa
) • H (a, ta) . (A11)

Finally, average output of age group a is given by

Y (a, ta, t̄) =E (y (v,a, e, a; ta, t̄)) = E [p (s; t̄) exp (xa + a) h (v, e, a; ta)]

=E [p (s; t̄)] • N (a, ta) ,

where

E [p (s; t̄)] =E [exp (p0 (t̄) + p1 (t̄) s)]

= exp (p0 (t̄)) •E

{
exp

((
g

h

)
•j

)}
= exp (p0 (t̄))

h

h − 1
.

Thus

Y (a, ta, t̄) =

⎡⎣( h

h − 1

) h
h−1
(

1 − t̄

h

) x
(1+x)(h−1)

(
1
g

) 1
(1+x)(h−1)

⎤⎦
•(1 − ta)

1
1+s exp

[
(xa − v̄a) +

(
ta
(
1 + ŝa

)
ŝ2

a
+

1
ŝa

)
ve,a

2

]
.
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A.5. Proof of Proposition 3 [optimal choice of g and {ka}]

It is useful to begin by computing

Ỹ (a, ta, t̄) :=
∫

(yi,a)
1−ta di = K (a, ta, t̄)

• exp
(

−ta (1 − ta) a
vy

2
+

(1 − ta) (1 − ta(1 + ŝa))
ŝa

ve,a

2

)

where, after some tedious algebra, one obtains

K (a, ta, t̄) =(1 − ta)
1−ta
1+s exp

(
(1 − ta) (xa − v̄a) − ta (1 − ta)

vv

2

)
•(1 − t̄)

x
1+x

1−ta
h−1

(
1

h − 1

) 1−ta
h−1

•

(
h

g

) 1−ta
(1+x)(h−1)

•
h

h + ta − 1
.

It is also useful, for what follows, to define the shorthand notation

ū (a,ka, ta) := u (c (v, s, a,a) , h (v, a, e)) ,

v̄ (t̄) := E [v (s(j, t̄), j)] .

Recall that welfare in steady state is given by

W ss (g,
{
ka, ta

})
=

1
A

A−1∑
a=0

E [u (c (v, s, a,a) , h (v, a, e) , G)] − E [v (s(j, t̄), j)] .

Thus, the Ramsey planner’s problem can be written as

max{g,ka ,ta}W
ss (g,

{
ka, ta

})
=

1
A

A−1∑
a=0

ū (a,ka, ta) + w log

(
g

A−1∑
a=0

Y (a, ta, t̄)

)
− v̄ (t̄)

subject to (A12)

1
A

A−1∑
a=0

kaỸ (a, ta, t̄) = (1 − g)
1
A

A−1∑
a=0

Y (a, ta, t̄) .

Letting z denote the multiplier on the government budget constraint, and recognizing that ∂ ū (a,ka, ta) /∂ka = k−1
a from Eq. (18), the

first-order condition with respect to ka yields

1
ka

= z • Ỹ (a, ta, t̄) . (A13)

Since Ca = kaỸ (a, ta, t̄), this first-order condition implies that average consumption is equalized across ages:

z−1 = C = (1 − g)
1
A

A−1∑
a=0

Y (a, ta, t̄) . (A14)

Consider now the first-order condition with respect to g:

w

g
= z

1
A

A−1∑
a=0

Y (a, ta, t̄) .

Using Eq. (A14) in the above equation yields

g∗ =
w

1 + w
.
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A.6. Proof of Proposition4 [optimal age-dependent progressivity]

To derive the exact analytical expression for the social welfare function in steady state, we analyze each of its components one at a time.
The first term in Eq. (A.5) can be written as

ū (a,ka, ta, t̄) =
∫ ∫ ∫

log c (a,v,a, s; ka, ta, t̄) dFsdFa
adFv

−
∫ ∫

exp ((1 + s) (v + v̄a)) h(v, e, a; ta)
1+s

1 + s
dFvdFea.

Note that average log consumption for age group a is

E [log c (a,v,aa, s; ka, ta, t̄) |a]

=
{
E [log c (a,v,aa, s; ka, ta, t̄) |a] − log C (a,ka, ta, t̄)

}
+ log C (a,ka, ta, t̄)

where

E [log c (a,v,aa, s; ka, ta, t̄) |a] = logka + (1 − ta)

(
− vya

2
− vv

2

)
+ (1 − ta) (xa − v̄a) +

1 − ta

1 + s
log(1 − ta)

+ (1 − ta)
(1 − ta(1 + ŝa))

ŝa
•

ve,a

2
+ (1 − ta)E [log p (s; t̄)]

and

E [log p (s; t̄)] = p0(t̄) + p1 (t̄)E[s]

p0(t̄) =
x

(1 + x) (h − 1)
log (1 − t̄) +

1
(1 + x) (h − 1)

log
(
h

g

)
+

1
h − 1

log
(

1
h − 1

)

p1 (t̄)E[s] =

[(
g

h

) 1
1+x

(1 − t̄)
− x

1+x

][
g

h
(1 − t̄)

] x
1+x

•g−1 =
1
h
.

Thus

E [log c (a,v,aa, s; ka, ta, t̄) |a] = logka − (1 − ta)

(
vya

2
+

vv

2

)
+

1 − ta

1 + s
log(1 − ta) + (1 − ta) (xa − v̄a)

+ (1 − ta)
(1 − ta(1 + ŝa))

ŝa
•

ve,a

2
+

x (1 − ta)

(1 + x) (h − 1)
log (1 − t̄)

+
(1 − ta)

(1 + x) (h − 1)
log

(
h

g

)
+

(1 − ta)

h − 1
log

(
1

h − 1

)
+ (1 − ta)

(
1
h

)
.

Moreover

log C (a,ka, ta, t̄) = logka − ta (1 − ta) a
vy

2
+
(
(1 − ta)

1 − ta (1 + ŝa)

ŝa

ve

2

)
+

1 − ta

1 + s
log (1 − ta) + (1 − ta) (xa − v̄a)

− ta (1 − ta)
vv

2
+

(1 − ta)x

(1 + x) (h − 1)
log (1 − t̄)

+
1 − ta

h − 1
log

(
1

h − 1

)
+

1 − ta

(1 + x) (h − 1)
log

(
h

g

)
+ log

(
h

h + ta − 1

)
.

Therefore, the difference between these two terms is

E [log c (a,v,aa, s; ka, ta, t̄) |a] − log C (a,ka, ta, t̄)

= − (1 − ta)
2
(

vya
2

+
vv

2

)
+

1 − ta

h
− log

(
h

h + ta − 1

)
.

and combining all these terms gives

1
A

A−1∑
a=0

ūa =
1
A

A−1∑
a=0

[
−(1 − ta)

2
(

vya
2

+
vv

2

)
+

1 − ta

h
− log

(
h

h + ta − 1

)
+ log C(a)

]
.
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Average disutility of hours worked in age group a is

∫ ∫
exp ((1 + s) (v + v̄a)) h(v, e, a; ta)

1+s

1 + s
dFvdFea

=
1 − ta

1 + s

∫
exp ((1 + s) (v + v̄a)) exp(− (1 + s) (v + v̄a))dFv

•

∫ [
exp

(
− 1 + s

ŝ(1 − ta)
Ca

)
exp

(
1 + s

ŝ
e

)]
dFea

=
1 − ta

1 + s
.

The average cost of skill investment in each cohort of newborns is

v̄ (t̄) =
∫

v (j; t̄) dFj =
x

1 + x

(
1 − t̄

h

)
.

Combining these components, and noting that as b → 1 the constant (1 − b) /
(
1 − bA

) → 1/A, we can rewrite the social welfare function
(up to a constant) only as a function of {ta} as

W ss(g, {ta}) =
1
A

A−1∑
a=0

ūa − v̄ + w log

(
g

A−1∑
a=0

Ya

)

=
1
A

A−1∑
a=0

[
−(1 − ta)

2
(

vya
2

+
vv

2

)
+

1 − ta

h
− log

(
h

h + ta − 1

)
+ log C(a)

]

− 1
A

A−1∑
a=0

1 − ta

1 + s
−
(

x

1 + x

)(
1 − t̄

h

)
+ w log g + w log

A−1∑
a=0

Ya

=
1
A

A−1∑
a=0

[
−(1 − ta)

2
(

vya
2

+
vv

2

)
+

1 − ta

h
− log

(
h

h + ta − 1

)]
+ log (1 − g)

− 1
A

A−1∑
a=0

1 − ta

1 + s
−
(

x

1 + x

)(
1 − t̄

h

)
+ w log g + (1 + w) log

A−1∑
a=0

Ya,

where the last step above uses Eq. (A14), which combines the optimality condition for ka (stating that consumption is equalized across ages)
and the government budget constraint.

Substituting the expression for Ya (Eq. (25)) into the above expression for W ss(g,
{
ka, ta

}
), we arrive at

W ss(g, {ta}) = log (1 − g) + w log g − 1
A

A−1∑
a=0

1 − ta

1 + s︸ ︷︷ ︸
Disutility of labor

(A15)

+ (1 + w) log

{
A−1∑
a=0

(1 − ta)
1

1+s • exp

[
xa − v̄a +

(
ta
(
1 + ŝa

)
ŝ2

a
+

1
ŝa

)
ve,a

2

]}
︸ ︷︷ ︸

Effective hours N̄a

+ (1 + w)
1

(1 + x)(h − 1)

[
x log (1 − t̄) + log

(
1

ghx

(
h

h − 1

)h(1+x)
)]

︸ ︷︷ ︸
Productivity: log(average skill price)=log(E[p(s,t̄)])

− x

1 + x

1 − t̄

h︸ ︷︷ ︸
Avg. education cost

+
1
A

A−1∑
a=0

[
log

(
1 −

(
1 − ta

h

))
+
(

1 − ta

h

)]
︸ ︷︷ ︸

Cost of consumption dispersion across skills

− 1
A

A−1∑
a=0

1
2
(1 − ta)

2 (vv + avy

)
︸ ︷︷ ︸

Cons. dispersion due to unins. shocks and preference heterogeneity

.

Each term in this welfare function has the economic interpretation described under each bracket. For more details, see Heathcote et al.
(2017). This welfare expression is only a function of g and {ta}. The optimal choice of the public good yields g∗ = w/ (1 + w), which proves
statement (i) of the proposition. Substituting this optimal choice back into Eq. (A15) yields an expression for welfare that is only a function of
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the sequence {ta}. Given the sequence of optimal age-dependent progressivity obtained from maximizing Eq. (A15), the optimal sequence of{
ka
}

can be recovered residually from Eq. (A13).
Taking the first-order condition of Eq. (A15) with respect to ta (i.e., setting ∂W ss

∂ta
= 0), we arrive at Eq. (28) in the main text. Standard

algebra yields the second-order condition

∂2W ss

∂2ta
= − 1

(h − 1 + ta)
2

− (
vv + avy

)
−
(

1 + w

h − 1

)(
x

1 + x

) (
db2)a

(1 − t̄)
2

−
(

1 + w

1 + s

)(
Na

N̄

)
•

[
1

(1 − ta)
2

+ (s + 1)
3 s − 2ta

(s + ta)
4

ve,a

]

+
(

1 + w

1 + s

)(
1

1 − ta
+
(

1 + s

s + ta

)3

tave,a

)
1

N̄

[
1 −

(
Na

N̄

)
1
A

]
∂Na

∂ta
.

Clearly, the first two terms are negative. The last term is always negative since N̄A ≥ Na and ∂Na
∂ta

< 0, recall Eq. (23). Therefore, a sufficient
condition for the third term to be negative is that s ≥ 2. This establishes that the social welfare function is globally concave in {ta} when s ≥ 2,
so the first-order condition (A16) is necessary and sufficient to characterize the optimal ta.

(i) Simple differentiation establishes that this optimality condition is

0 =
1

h − 1 + ta
− 1

h
+ (1 − ta)

(
vv + avy

)
+

1
1 + s

+ (A16)

−
[(

1 + w

h − 1

)
1

1 − t̄
− 1

h

]
x

1 + x
ba

−
(

1 + w

1 + s

)[
1

1 − ta
+
(

s + 1
s + ta

)3

tave,a

]
N (a, ta)

N̄ ({ta})
,

where the expressions for N (a, ta) and N̄ ({ta}) are given in Corollary 2.2.
(ii) By inspecting Eq. (A16), it is immediate to see that age a does not enter as an argument in the first-order condition provided that

vy = 0, the sequences {vea} and
{
xa − v̄a

}
are constant, and one of the following conditions is satisfied: either b → 1 or h → ∞.

Therefore, the sequence of optimal ta must be independent of age in this case. As a consequence, Ỹ(a) is age-invariant, and hence,
from the first-order condition (A13), the optimal k∗

a must also be independent of age.
(iii) Relative to the benchmark in (ii), when vy > 0, the optimal t∗

a is increasing with age since a larger value for avy must be balanced
by a lower value for (1 − ta).

(iv) Relative to the benchmark in (ii), when ve,a increasing in age between age a and a + 1, it is easy to see that t∗
a > t∗

a+1.
(v) Relative to the benchmark in (ii), the optimal t∗

a is increasing with age also when b < 1 and h < ∞. To see this, note that the term
on the second line,

−
(

1 + w

h − 1
1 − bd

1 − d

1
1 − t̄

− 1
h

)
x

1 + x
(b)

a,

is negative and increasing in a when b < 1 and t̄ ≥ 0. Thus, when a increases, the other terms must fall. Note that the terms 1
h−1+ta

,
(1 − ta)

(
vv + avy

)
, and the term in the third line are all decreasing in ta. It follows that ta must increase with age.

(vi) Relative to the benchmark in (ii), when
{
xa − v̄a

}
is increasing with age N(a)/N̄ is increasing in age in the last term of Eq. (A16). Thus,

a lower value of (1 − ta)
−1 is needed to counterbalance this force, which implies that the optimal t∗

a is decreasing in age.

A.7. Proof of Corollary 4.1 [optimal age-dependent taxation with life cycle only]

When individuals differ only by age, the equilibrium expressions for hours and earnings simplify to

h(a) = exp(−va)(1 − ta)
1

1+s , (A17)

w(a)h(a) = Na(ta) = exp(xa − va)(1 − ta)
1

1+s . (A18)

Under the assumptions stated in the corollary, the first-order condition for optimal progressivity at age a is

1 − t∗
a = (1 + w)

Na(t∗
a)

N(t̄
({
t∗

a
})

)
. (A19)
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Eqs. (A18) and (A19) combined imply

1 − t∗
a =

[
(1 + w)

exp(xa − v̄a)
N(t̄

({
t∗

a
})

)

] 1+s
s

. (A20)

Recall that the planner wants to choose the sequence
{
ka
}

to equate consumption across age groups. Thus, it will set k∗
a subject to

c(a) = k∗
aNa(t

∗
a)

1−t∗
a = C,

which implies

k∗
a =

C

Na(t∗
a)

1−t∗
a
.

The intratemporal first-order condition at age a is

ka (1 − ta) (w(a)h(a))−ta w(a)
C

= exp (− (1 + s) v̄a) h(a)s ,

and since w(a)h(a) = Na(ta), the labor wedge in this intratemporal first-order condition is

LWa =ka(1 − ta)Na(ta)−ta (A21)

=
C

Na(ta)
(1 − ta).

Now plug the expression for Na(ta) (Eq. (A18)) and the solution for (1 − t∗
a)(Eq. (A20) into Eq. (A21)), which gives

LWa =
1 + w

N(t̄
({
t∗

a
})

)
C,

which demonstrates that the labor wedge is independent of age. Moreover, from the resource constraint and the optimal public good provision
condition, we know that

C (1 + w) = Y = N(t̄
({
t∗

a
})

),

which implies that LWa = 1 (i.e., the effective marginal tax rate is zero).
Because the optimal tax and transfer scheme leaves labor supply undistorted and equates consumption across age groups, it implements

the first-best allocation.
Finally, from Eq. (A21), imposing LWa = 1 and averaging across age groups gives

Y =
1
A

A−1∑
a=0

Na(ta
({
t∗

a
})

) =
1
A

A−1∑
a=0

C(1 − t∗
a).

Then, using C
Y = 1

1+w , we get the expression for the optimal average degree of tax progressivity,

1
A

A−1∑
a=0

t∗
a = −w.

A.8. Proof of Proposition5 [optimal age-dependent taxation with transition]

First, note that the derivations and expressions for equilibrium allocations, conditional on a given fiscal policy, are identical to those in the
proofs of Propositions 1 and 2 and Corollaries 2.1 and 2.2 The analysis only differs once we start constructing the expression for social welfare
because allocations and policies now vary by time. Define

Ya,t = E [pa,t (s; t̄a,t) exp(xa + a)ha,t(v, e; ta,t)]

Ca,t = ka,tỸa,t

where

Ỹa,t = E

[
(pa,t (s; t̄a,t) exp(xa + a)ha,t(v, e; ta,t))

1−ta,t
]

,
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and let

Yt =
1
A

A−1∑
a=0

Ya,t

Ỹt =
1
A

A−1∑
a=0

Ỹa,t

denote the corresponding population averages.
The government budget constraint can be written as

(1 − gt) Yt =
1
A

A−1∑
a=0

ka,tỸa,t. (A22)

Given the allocations described, we can assemble the components of social welfare in Eq. (29).
Expected utility from consumption for age group a at date t (ignoring the term 1−b

1−bA b
a in Eq. (2), which pre-multiplies all the utility

components involving consumption, hours, and public consumption) is

E [log ca,t(v,a, s; ka,t , ta,t , t̄a,t)] =
{
E [log ca,t(v,a, s)] − log Ca,t

}
+ log Ca,t (A23)

= − (1 − ta,t)2
(

vya
2

+
vv

2

)
+ log

(
1 −

(
1 − ta,t

h

))
+
(

1 − ta,t

h

)
+ logka,t + log Ỹa,t.

Expected utility from public good provision is

w log (gtYt) . (A24)

Expected disutility from hours worked for age group a at date t is

−E

[
exp [(1 + s) (v̄a + v)]

1 + s
ha,t(v, e; ta,t)

1+s

]
= − 1 − ta,t

1 + s
.

The expected utility contribution from skill investment for age group a at date t is

−E

[
j−(1/x)

1 + 1/x
s(t̄a,t)1+1/x

]
= − x

1 + x

(
1 − t̄a,t

h

)
.

We can now compute total welfare for the planner, as of date 0, using Eqs. (2) and (29).
Note first that the policy parameters ka,t only appear in the terms involving expected utility from consumption and the government budget

constraint. Let f t denote the multiplier on this constraint (Eq. (A22)).
The first-order condition with respect to ka,t is

1
ka,t

= ftỸa,t = ft
Ca,t

ka,t
,

which implies

Ca,t =
1
ft

.

Thus, given Ỹa,t (which is independent of ka,t), the policy parameter ka,t is set so that average consumption for age group a is independent
of age and only varies with time. This value for Ca,t is uniquely pinned down from the government budget constraint, given a value for gt:

Ca,t = Ct = (1 − gt)Yt , (A25)

which implies

ka,t =
(1 − gt)Yt

Ỹa,t
.
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With the expression for Ca,t in Eq. (A25) substituted into the first row of Eq. (A23), ka,t no longer appears in any of the terms in social welfare.
Now consider the optimality condition for gt. Note that gt appears in the form w log gt in the contribution from publicly provided goods (Eq.

(A24)) and in the form log(1 − gt) in the contribution from the level of average private consumption. The first-order condition with respect to
gt immediately implies the result gt = w

1+w .

A.9. Proof of Proposition6 [optimal taxation with transition and inelastic labor supply]

We now write out all the terms in social welfare explicitly. To start with, we allow for flexible labor supply (s < ∞). In order to economize
on space, we assume people live for only two periods: the generalization to A > 1 is straightforward.

The date t component of social welfare in expression (29) (ignoring the terms w log gt and log(1 − gt), which do not involve any ta,t

parameters) is

(
1 − b

1 − b2

)(
log

(
1 −

(
1 − t1,t

h

))
+
(

1 − t1,t

h

)
− 1 − t1,t

1 + s
+ (1 + w) log

{
1
2

(Y0,t + Y1,t)

})
+
(

1 − b

1 − b2

)(
log

(
1 −

(
1 − t0,t

h

))
+
(

1 − t0,t

h

)
− 1 − t0,t

1 + s
+ (1 + w) log

{
1
2

(Y0,t + Y1,t)

})

− x

1 + x

⎛⎝1 −
(

1−b

1−b2 (t0,t + bEt [t1,t+1])
)

h

⎞⎠ ,

where the first line reflects the contribution to welfare from the old, and the second and third lines the contribution from the young.
Output of the young and old at t is given by

Y0,t =(1 − t0,t)
1

1+s •Et[p0,t]

Y1,t =(1 − t1,t)
1

1+s •Et−1[p1,t],

where

Et[p0,t] = Et[p1,t+1] =

⎡⎢⎢⎣( h

h − 1

) h
h−1

⎛⎝1 − (1−b)
(1−b2)

(t0,t + bEt[t1,t+1])

h

⎞⎠
x

(1+x)(h−1) (
1
g

) 1
(1+x)(h−1)

⎤⎥⎥⎦ .

Note that Yt = 1
2 (Y0,t + Y1,t) depends on t0,t, Et[t1,t+1], t1,t and Et−1[t1,t].

At t = 0 (the time of the reform), only three tax parameters (t0,0, t1,1, t1,0) affect contemporaneous output:

∂ log Y0

∂t0,0
=

1
2

− 1
1+s (1 − t0,0)

−s
1+s E0[p0,0] + (1 − t0,0)

1
1+s

∂E0[p0,0]
∂t0,0

Y0
: young adjust hours & skill inv. at t = 0

∂ log Y0

∂t1,1
=

1
2

(1 − t1,1)
1

1+s
∂E0[p1,1]

∂t1,1

Y0
: young adjust skill investment at t = 0 in response to t1,1

∂ log Y0

∂t1,0
=

1
2

− 1
1+s (1 − t1,0)

−s
1+s E−1[p1,0(t−1)]
Y0

: old adjust hours at t = 0

In contrast, for a generic date t > 0, output depends on four different parameters:

∂ log Yt

∂t0,t
=

1
2

− 1
1+s (1 − t0,t)

−s
1+s E[p0,t] + (1 − t0,t)

1
1+s

∂E[p0,t]
∂t0,t

Yt
: young adjust hours & skill inv. at t

∂ log Yt

∂t1,t+1
=

1
2

(1 − t0,t)
1

1+s
∂E[p0,t]
∂t1,t+1

Yt
: young adjust skill investment at t

∂ log Yt

∂t1,t
=

1
2

− 1
1+s (1 − t1,t)

−s
1+s E[p1,t] + (1 − t1,t)

1
1+s

∂E[p1,t]
∂t1,t

Yt
: old adjust hours at t& skill inv. at t − 1

∂ log Yt

∂t0,t−1
=

1
2

(1 − t1,t)
1

1+s
∂E[p1,t]
∂t0,t−1

Yt
: old adjust hours at t& skill inv. at t − 1
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Thus, in general t0,t affects both Yt and Yt+1, while t1,t affects Yt and Yt−1.
Consider the generic first-order condition for t0,t for all t ≥ 0. We have

(
1 − b

1 − b2

)
(1 + w)

∂ log Yt

∂t0,t
: effect on old at t

+
(

1 − b

1 − b2

)⎛⎝ 1
h

1 −
(

1−t0,t
h

) − 1
h

+
1

1 + s
+ (1 + w)

∂ log Yt

∂t0,t

⎞⎠+
x

1 + x

(
1−b

1−b2

)
h

: effect on young at t

+b

(
1 − b

1 − b2

)(
(1 + w)

∂ log Yt+1

∂t0,t

)
: effect on old at t + 1

+b

(
1 − b

1 − b2

)(
(1 + w)

∂ log Yt+1

∂t0,t

)
: effect on young at t + 1

= 0

The terms here are readily interpretable. Increasing t0,t reduces skill investment at t, which reduces output at t + 1. This reduces welfare
for young and old at t + 1 (the last two lines). Increasing t0,t also reduces output at t, both through the skill investment channel, and by
reducing the labor supply of the young. This accounts for the first line and the term involving output in the second line. Finally, increasing t0,t

compresses consumption inequality among the young at t, reduces hours worked by the young at t, and reduces skill investment costs by the
young at t. These are the remaining terms in the second line.

Now consider the generic first-order condition for t1,t+1 for t ≥ 0. This condition is

(
1 − b

1 − b2

)
(1 + w)

∂ log Yt

∂t1,t+1
: effect on old at t

+
(

1 − b

1 − b2

)
(1 + w)

∂ log Yt

∂t1,t+1
+ b

x

1 + x

⎛⎝
(

1−b

1−b2

)
h

⎞⎠ : effect on young at t

+b

(
1 − b

1 − b2

)⎛⎝ 1
h

1 −
(

1−t1,t+1
h

) − 1
h

+
1

1 + s
+ (1 + w)

∂ log Yt+1

∂t1,t+1

⎞⎠ : effect on old at t + 1

+b

(
1 − b

1 − b2

)(
(1 + w)

∂ log Yt+1

∂t1,t+1

)
: effect on young at t + 1

We can write these two first-order conditions more compactly as

2(1 + w)
(

∂ log Yt

∂t0,t
+ b

∂ log Yt+1

∂t0,t

)
+

x

1 + x

1
h

+
(

1
(h − 1 + t0,t)

− 1
h

+
1

1 + s

)
= 0 (A26)

2(1 + w)
(

∂ log Yt

∂t1,t+1
+ b

∂ log Yt+1

∂t1,t+1

)
+ b

x

1 + x

1
h

+ b

(
1

(h − 1 + t1,t+1)
− 1

h
+

1
1 + s

)
= 0 (A27)

Now note that

∂ log Yt

∂t0,t
+ b

∂ log Yt+1

∂t0,t
=

1
2

− 1
1+s (1 − t0,t)

−s
1+s E[p0,t] + (1 − t0,t)

1
1+s

∂E[p0,t]
∂t0,t

Yt
+ b

1
2

(1 − t1,t+1)
1

1+s
∂E[p1,t+1]

∂t0,t

Yt+1

∂ log Yt

∂t1,t+1
+ b

∂ log Yt+1

∂t1,t+1
=

1
2

(1 − t0,t)
1

1+s
∂E[p0,t]
∂t1,t+1

Yt
+ b

1
2

− 1
1+s (1 − t1,t+1)

−s
1+s E[p1,t+1] + (1 − t1,t+1)

1
1+s

∂E[p1,t+1]
∂t1,t+1

Yt+1

∂E[p1,t+1]
∂t1,t+1

=
∂E[p0,t]
∂t1,t+1

= b
∂E[p1,t+1]

∂t0,t
= b

∂E[p0,t]
∂t0,t

which jointly imply

∂ log Yt

∂t1,t+1
+ b

∂ log Yt+1

∂t1,t+1
= b

(
∂ log Yt

∂t0,t
+ b

∂ log Yt+1

∂t0,t

)
+ b

1
1 + s

E[p0,t]

(
(1 − t0,t)

−s
1+s

Yt
− (1 − t1,t+1)

−s
1+s

Yt+1

)
(A28)
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Now consider the case with inelastic labor supply, so that s → ∞. The second term on the right-hand side of the above equation drops out.
Then substituting this equation into the first-order condition for t1,t+1 (Eq. (A27)), it is clear that the first-order conditions for t0,t and t1,t+1

are exactly symmetric, except that all the terms in the latter are multiplied by b.
It follows that the optimal value for t0,t is equal to the optimal value for t1,t+1. Note, finally, that the optimal value for these policy parame-

ters must be strictly less than one. The reason is that from the first-order condition (Eq. (A26)), the marginal value of consumption compression
at t0,t = 1 is zero, while the marginal cost in terms of reduced skill investment and output is strictly positive.

Now consider the optimal choice for t1,0, progressivity for the old at the time of the tax reform, which is the only choice we have not
explored so far. The first-order condition here is

(
1

(h − 1 + t1,0)
− 1

h
+

1
1 + s

+ (1 + w)
∂ log Y0

∂t1,0

)
+ (1 + w)

∂ log Y0

∂t1,0
= 0,

where

∂ log Y0

∂t1,0
=

1
2

− 1
1+s (1 − t1,0)

−s
1+s E−1[p1,0]

Yt

Here, an increase in t1,0 reduces consumption inequality among the old and reduces the old’s labor supply, which translates into reduced
output and thus consumption and government spending for both the young and the old at date 0.

With inelastic labor supply, the first-order condition simplifies further to

1
(h − 1 + t1,0)

− 1
h

= 0,

which immediately implies t1,0 = 1.

A.10. Extension to age variation in the taste for leisure

By following the same steps of the proof of Proposition 1, we arrive at the new allocations:

log h (v, a, e) =
log(1 − ta)

1 + s
− (v + v̄a − ca) +

(
1 − ta

s + ta

)
e − 1

s + ta
Ca, (A29)

log c (v, s, a,a) = logka + (1 − ta)

[
log p(s, t̄) + xa + a +

log(1 − ta)
1 + s

− (v + v̄a − ca)
]

+ Ca. (A30)

The equilibrium skill prices p(s, t̄) remain unchanged. By following the same derivations needed to obtain the steady-state welfare
expression (27), we arrive at

W({ta}) = − 1
A

A−1∑
a=0

1 − ta

1 + s
exp ((1 + s)ca)︸ ︷︷ ︸

Disutility of labor

(A31)

+ (1 + w) log

{
A−1∑
a=0

(1 − ta)
1

1+s • exp

[
xa − v̄a + ca +

(
ta
(
1 + ŝa

)
ŝ2

a
+

1
ŝa

)
ve,a

2

]}
︸ ︷︷ ︸

Effective hours workedN̄a

+ (1 + w)
1

(1 + x)(h − 1)

[
x log (1 − t̄) + log

(
1

ghx

(
h

h − 1

)h(1+x)
)]

︸ ︷︷ ︸
Productivity of skill investment: log( average skill price)=log(E[p(s)])

− x

1 + x

1 − t̄

h︸ ︷︷ ︸
Avg. education cost

+
1
A

A−1∑
a=0

exp ((1 + s)ca)

[
log

(
1 −

(
1 − ta

h

))
+
(

1 − ta

h

)]
︸ ︷︷ ︸

Consumption dispersion across skills

− 1
A

A−1∑
a=0

exp ((1 + s)ca) •
1
2
(1 − ta)

2 (vv + avy

)︸ ︷︷ ︸
Cons. dispersion due to uninsurable risk and preference heterogeneity

Appendix B. Extension to borrowing and saving

This appendix describes the extension of the benchmark model to an economy where households are allowed to trade a risk-free bond in
zero net supply.
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B.1. Economic environment

The economic environment is virtually identical to the one in the main text. We therefore only highlight what differs.

B.1.1. Financial assets
The main difference from the benchmark model consists of the ability of households to save in a risk-free asset b with gross return

R = 1 + r. Short positions are allowed up to an exogenous limit −b̄a

[
p(s,t̄) exp(aa)

exp(v)

]
, where b̄A = 0, that is, a no-Ponzi condition stating that

the household cannot die with negative wealth needs to hold. Assets are in zero net supply (i.e. B = 0). Thus, when b̄a = 0 for all a, the only
equilibrium is autarky, and the benchmark model becomes a special case of this general model.

B.1.2. Government
We assume that the tax base is total income net of saving (i.e., expenditures), or

mi,a = p(si, t̄) exp(xi,a + ai,a)hi,a + rbi,a − (bi,a+1 − bi,a). (B1)

As we will see, this assumption is convenient because it allows us to simplify the model and retain the closed-form solution for the
equilibrium skill price function p(s, t̄). The tax and transfer scheme is defined as in the main text, that is,

Ta(mi,a) = mi,a − kam1−ta
i,a . (B2)

We abstract from the possibility that the government can issue debt or save. The government budget constraint therefore reads as

g
1
A

A−1∑
a=0

∫
yi,adia =

1
A

A−1∑
a=0

∫ [
mi,a − ka(mi,a)

1−ta
]

dia. (B3)

B.2. Solution to the household problem

The agent chooses skills at age a = 0. Abstract from this choice for now and consider an individual with skill level s. After the skill choice,
the household solves

max
{ba+1}A−1

a=0

E0

(
1 − b

1 − bA

) A−1∑
a=0

ba
[

log ca − exp [(1 + s) (v̄a + v)]
1 + s

h1+s
a + w log G

]
s.t.

ca = ka[p(s, t̄) exp(xa + aa)ha + Rba − ba+1]1−ta

and

ba+1 ≥ −b̄a

[
p (s, t̄) exp (aa)

exp(v)

]
. (B4)

The first-order condition for hours worked and the Euler equation are

(1 − ta)p(s, t̄) exp(xa + aa)
p(s, t̄) exp(xa + aa)ha + Rba − ba+1

= exp [(1 + s) (v̄a + v)] hs
a

(1 − ta)
p(s, t̄) exp(xa + aa)ha + Rba − ba+1

≥bREa

[
(1 − ta+1)

p(s, t̄) exp(xa+1 + aa+1)ha+1 + Rba+1 − ba+2

]
= if ba+1 > −b̄a

[
p (s, t̄) exp (aa)

exp(v)

]
.

Define transformations of endogenous variables as follows:

ĥa = ha • exp(v) (B5)

b̂a = ba •
exp(v)

exp (aa) p (s, t̄)
(B6)

b̂∗
a+1 = ba+1 •

exp(v)
exp (aa) p (s, t̄)

(B7)

b̂a+1 =
b̂∗

a+1

exp (ya+1)
(B8)
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With some algebra, it can easily be shown that the two first-order conditions can be rewritten in terms of these transformed variables as

(1 − ta) exp(xa)

exp(xa)ĥa + Rb̂a − b̂∗
a+1

= exp [(1 + s)v̄a] ĥs
a

1

exp(xa)ĥa + Rb̂a − b̂∗
a+1

≥bR
(

1 − ta+1

1 − ta

)
Ea

⎡⎣ 1

exp (ya+1)
(

exp(xa+1)ĥa+1 + Rb̂a+1 − b̂∗
a+2

)
⎤⎦

= if b̂∗
a+1 ≥ −b̄a.

The advantage of writing the first-order conditions in this way is that age a and transformed wealth b̂a are the only idiosyncratic states. We
can use a backstepping algorithm starting from the known fact that b̂A = 0.

In particular, from the household problem, we obtain policy functions ĥa

(
b̂a; ta

)
, b̂∗

a+1

(
b̂a; {ta}

)
, ĉa

(
b̂a; {ta}

)
, where ĉa := exp(xa)ĥa +

Rb̂a − b̂∗
a+1. From these decisions, by rescaling back to the original states, we can obtain

ha (ba; v, ta) = ĥa

(
b̂a • exp (aa) • p (s, t̄) exp (−v) ; ta

)
exp (−v)

ba+1 (ba; aa, s,v, {ta}) = exp (aa) • p (s, t̄) exp (−v) • b̂∗
a+1

(
b̂a • exp (aa) • p (s, t̄) exp (−v) ; {ta}

)
ca (ba; aa, s,v, {ta}) = ka[p (s, t̄) exp (aa) exp (−v)]1−ta ĉa

(
b̂a; {ta}

)1−ta
,

where the last one is obtained residually from the budget constraint.

B.3. The wealth distribution

Suppose we have come up with an interest rate such that

A−1∑
a=0

∫
b̂a

b̂∗
a+1

(
b̂a

)
dFb̂a

= 0,

if so, it can be shown that the true bond market clears, that is,

A−1∑
a=0

∫
ba

∫
s

∫
aa

∫
v

ba+1(ba; aa, s,v,t)dFsdFa0 dFvdFba = 0.

If we denote the distribution for an individual of age a la(b̂; {ta}), we know that l0(b̂ = 0) = 1; that is, all the mass is at b = 0 (individuals
are born with zero wealth). We can therefore easily initiate the recursion and move forward using the household’s policy functions.

B.4. Welfare

The planner maximizes welfare

W(g,ka, ta) =
1
A

A−1∑
a=0

ūa − v̄ + w log

(
g •

A−1∑
a=0

Ya

)

where v̄ = x
1+x

(
1−t̄
h

)
is the average education cost for the newborn cohort and the period utility term is

ūa =
∫ [

log (ci,a) − exp [(1 + s) (v̄a + v)]
1 + s

h1+s
i,a

]
dia,

B.5. Computation

To find the optimal tax function, we start by setting g = w/(1 +w), the optimal solution, and approximate the ta function with a Chebyshev
polynomial of order two. We then maximize the welfare function with respect to the three parameters of the Chebyshev polynomial. The
formal algorithm is as follows:

1. Guess coefficients of Chebyshev polynomial {pj}2
j=0.

2. Evaluate the Chebyshev polynomial to get the full vector {ta}A−1
a=0:

(a) Guess an interest rate, R.
(b) Given R and {ta}A−1

a=0, solve the household problem using the endogenous grid method.
(c) Compute the asset distribution {la(b̂)}A−1

a=0 and total asset demand.
(d) If asset demand is zero go to 3, otherwise update R and go back to 2b.
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3. Given the solution to the household problem, compute welfare.
4. If welfare is maximized, stop; otherwise, update {pj}2

j=0 and go back to 2.

To solve the household problem, we use a grid with 50 points on [−b̄a, bmax] with bmax = 10 (further increasing the number of grid points
or bmax has no effect on results). To compute the asset distribution, we use the histogram method on the same grid used for the household
problem with 3000 grid points. Finally, we approximate the y distribution using Gaussian quadrature with nine Gauss-Hermite nodes.

To maximize the welfare function we use the Controlled Random Search with local mutation (CRS-LM) algorithm, which belongs to the
class of direct search algorithms. We use the version of CRS-LM available in the NLopt library, as defined by Kaelo and Ali (2006). Once CRS
has converged to the global optimum, we use the latter as a starting point for a local optimization to “polish” the optimum. The final local
optimization is performed using the LBFGS algorithm, which belongs to the class of quasi-Newton methods.

B.6. Retirement saving

One may be concerned that optimal progressivity in the economy calibrated to US credit limits is similar to that in autarky because we have
abstracted from retirement. With a retirement phase in the life cycle, the saving motive during working life might be stronger, which in turn
might weaken the importance of borrowing constraints.

We therefore add a retirement phase to the model, which we solve in partial equilibrium (bR = 1). We assume exogenous retirement at
age A − 1, corresponding to age 60, and extend the life cycle by 20 years to age 80. During this retirement period, each worker i is entitled
to a pension proportional to a proxy for lifetime earnings given by yR

i = p(si) exp(xA−1 + ai,A−1 − v̄A−1 − vi). This proxy is proportional to the
worker’s productivity at the end of her career and, through the disutility of work terms, it also contains a proxy for average hours over the
working life (recall Corollary 2.2).26

The government takes this pension function as given and chooses how to tax pensions, subject to the same functional form for the tax
schedule that applies to individuals of working age. Thus, the individual during retirement receives after-tax pension income ka(yR

i )1−ta .27

Fig. B.1 illustrates this case. First, note that the profile for progressivity is flat during retirement because there is no active source of age
dependence: retirees face no risk, and the pension baseline yR

i is constant. Because there are no distortions to labor supply during retirement,
one might be tempted to conjecture that the optimal ta in retirement would approach one. However, tax progressivity in retirement still
disincentivizes skill investment, since progressivity diminishes the payoff from higher skills in terms of higher pension income. The higher
is progressivity in retirement, the smaller are the marginal welfare gains from additional consumption compression, while the disincentive
effects on skill investment are linear in ta. Thus, as Fig. B.1 illustrates, it is not optimal to push progressivity to the maximum possible value at
retirement: ta jumps discretely as labor supply distortions disappear but stays well below one.
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Fig. B.1. Economy with intertemporal trade and a retirement period. Left panel: uninsurable risk channel only. Middle panel: life cycle channel only. Right panel: both channels
active. In each panel, the three lines correspond to a zero borrowing limit, an ad hoc borrowing limit estimated from SCF data, and the natural borrowing limit. The interest rate
is set exogenously so that R = b−1 = 1.

During working life, the optimal path for ta retains the U shape of the one in the economy without retirement (compare Fig. B.1 to the top
panel of Fig. 12 in the main text). However, the overall level of progressivity is now lower. Thus the planner offsets the disincentive effects
on skill investment arising from high values for ta in the retirement phase of life by choosing lower values for ta during the working phase of
life.

26 While pensions depend on idiosyncratic preference and productivity components, we maintain our assumption that net taxes before retirement are a function only of labor
earnings y.
27 In this extension, we set w = 0. Given this choice, pension outlays are similar in size to government consumption in the baseline model. Recall that while the value for w

affects the level of optimal progressivity, it does not induce age variation in optimal progressivity.
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